
ROCKCHIP I2C Developer Guide
ID: RK-KF-YF-027

Release Version: V2.2.0

Release Date: 2021-12-29

Security Level: □Top-Secret □Secret □Internal ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES NOT
PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH RESPECT TO
THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR ANY PARTICULAR
PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION AND CONTENT IN
THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS DOCUMENT MAY BE UPDATED
OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE UPGRADES OF THE PRODUCT OR
ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip’s registered trademarks and owned by Rockchip. All
the other trademarks or registered trademarks mentioned in this document shall be owned by
their respective owners.

All rights reserved. ©2021. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute
this document in any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

Preface

Overview

The Rockchip series of chips provides customers with a standard I2C bus that allows customers
to control and access different external devices. The I2C bus controller transfers information
between devices connected to the bus via serial data (SDA) lines and serial clock (SCL) lines. Each
device has a unique address identification (whatever it is a microcontroller - MCU, LCD driver,
memory or keyboard interface) and it can be used as a transmitter or receiver (depending on the
implement of the device).
The Rockchip I2C controller supports the following features:

Compatible with I2C and SMBus
Only supports master mode

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Chipset Kernel Version

All chips All version

Version Author Date Change Description

V1.0.0 David Wu 2018-06-08 Initial version

V2.0.0 David Wu 2019-11-14 support kernel-4.19

V2.1.0 David Wu 2021-06-02 support RK356X,RV1126,RV1109

V2.2.0 David Wu 2021-12-29 support all chips/version

Software programmable clock frequency support up to 400kbps, some chips up to 1000kbps
Supports 7-bit and 10-bit addressing modes
Interrupt or poll up to 32 bytes of data transfer at a time

The following figure shows the hardware connection of the I2C bus. The pull-up resistors are
required. Changing the pull-up resistor value can adjust the drive strength of the I2C bus.

Rockchip I2C has different driver on different chips and different kernel versions, i2c-rk3x.c or i2c-
rockchip.c (i2c-rockchip.c driver is used in the kernel version 3.10), the highest frequency I2C can
run is almost 1000K.

Product Version

Intended Audience

This document (this guide) is mainly intended for:

Technical support engineers

Software development engineers

Revision History

Contents

ROCKCHIP I2C Developer Guide
I2C flow

Trasmint only mode(I2C_CON[1:0]=2’b00)
Mix mode (I2C_CON[1:0]=2’b01 or I2C_CON[1:0]=2’b11)
Receive only mode (I2C_CON[1:0]=2’b10)

I2C Driver Parameter Configuration
Configuration for drive i2c-rk3x.c
Configuration for driver i2c-rockchip.c

I2C usage
Kernel space
User space

I2C tools
GPIO simulation as I2C
I2C FAQ

i2c-rk3x.c Driver
NACK Error
Timeout Error

Case 1
Case 2
Case 3

i2c-rockchip.c Driver
NACK Error
Timeout Error

Case 1
Case 2
Case 3

I2C waveform

I2C flow

The flow of I2C is roughly the same on both drivers about kernel 4.4 and kernel 3.10 . The write is
a simple TX mode (I2C_CON[1:0] = 2'b00), while the read generally uses the TRX mode
(I2C_CON[1:0] = 2'b01). The following I2C controller operational flow diagram describes how the
software configures and performs I2C tasks by this I2C controller register. The description
consists 3 parts, transfer mode, mixed mode and receive mode.

Trasmint only mode(I2C_CON[1:0]=2’b00)

af://n78
af://n80

Mix mode (I2C_CON[1:0]=2’b01 or I2C_CON[1:0]=2’b11)

af://n82

Receive only mode (I2C_CON[1:0]=2’b10)

af://n84

The above is the main flow of I2C, and please refer to driver code to get the further implement.

I2C Driver Parameter Configuration

The mainly part of parameter configuration I2C is the configuration of I2C frequency. The I2C
frequency can be matched not only related to the chip but also I2C SCL and SDA rise time,
because the I2C standard protocol has requirements for rising and falling edge time, especially
rising time. If the maximum value specified by the protocol is exceeded, the I2C communication

af://n87

may fail. The following is the maximum and minimum value specified in the protocol and figure
shows the relationship between them:

The rising edge Tr and the falling edge Tf need to be measured with an oscilloscope, refer to the
following diagram:

The I2C driver i2c-rk3x.c and i2c-rockchip.c are not the same. The differences are as follows:

Configuration for drive i2c-rk3x.c

The configuration of the i2c-rk3x.c driver is in DTS, reference file is
Documentation/devicetree/bindings/i2c/i2c-rk3x.txt . Here highlight the configuration
items, i2c-scl-rising-time-ns , i2c-scl-falling-time-ns :

clock-frequency: The default frequency is 100k, the default frequency can be remained, the
other I2C frequencies need to do configuration. The maximum configurable frequency is
determined by i2c-scl-rising-time-ns. For example to configure 400k, set clock-frequency=

<400000>; at dts.
i2c-scl-rising-time-ns: The rise time of SCL is determined by hardware and changing the pull-
up resistor can adjust the time. It needs to be measured by oscilloscope, refer to the above
figure; for example, measure the rise edge of SCL is 265ns, set i2c-scl-rising-time-ns=

<265>; at dts. (The default rising time can be remained, but the current rising edge time
must be ensured that it is under the maximum rising edge time which defined by the I2C
standard for the configured frequency).
i2c-scl-falling-time-ns: The SCL fall edge time, which has no change generally , is equivalent
to i2c-sda-falling-time-ns. (The default is also no need to configure).

&i2c1 {

 status = "okay";

 i2c-scl-rising-time-ns = <265>;

 i2c-scl-falling-time-ns = <11>;

 clock-frequency = <400000>;

 es8316: es8316@10 {

 #sound-dai-cells = <0>;

 compatible = "everest,es8316";

 reg = <0x10>;

 clocks = <&cru SCLK_I2S_8CH_OUT>;

 clock-names = "mclk";

af://n93

Configuration for driver i2c-rockchip.c

The i2c-rockchip.c driver still follows the constraint relationship between the I2C frequency and
the rise edge of SCL. Whether the higher frequency can be used depends on i2c-scl-rising-time-
ns; the I2C frequency is configured on the code scl_rate member at the i2c_msg structure directly.
The default frequency is still 100k, such as the following 200K configuration:

I2C usage

The further instructions for using I2C are in Documentation/i2c/* . The following sections focus
on the read and write sections:

Kernel space

Rockchip I2C sending and receiving communication uses the standard interface of Linux. Please
refer to the Documentation/i2c/writing-clients under kernel for a description of the sending
and receiving section.

User space

Typically, I2C devices are controlled by the kernel driver. However, all devices on the bus can also
be accessed from the user mode through the /dev/i2c-%d interface. Documentation/i2c/dev-

interface under the kernel has further descriptions and examples.

I2C tools

I2C tool is an open source tool, you can download it and cross-compile. The code download
address is:
 https://www.kernel.org/pub/software/utils/i2c-tools/
OR
 <git clone git://git.kernel.org/pub/scm/utils/i2c-tools/i2c-tools.git>

After compiling, it will generate tools such as i2cdetect, i2cdump, i2cset, i2cget, i2ctransfer, which
can be used directly on the command line.
The I2C tool are all open source. Please refer to the README and help instructions for
compilation and using.

GPIO simulation as I2C

 spk-con-gpio = <&gpio0 11 GPIO_ACTIVE_HIGH>;

 hp-det-gpio = <&gpio4 28 GPIO_ACTIVE_LOW>;

 };

};

 struct i2c_msg xfer_msg;

 xfer_msg[0].addr = client->addr;

 xfer_msg[0].len = num;

 xfer_msg[0].flags = client->flags;

 xfer_msg[0].buf = buf;

 xfer_msg[0].scl_rate = 200 * 1000; /* 200K i2c clock frequency */

af://n103
af://n106
af://n108
af://n110
af://n112
https://www.kernel.org/pub/software/utils/i2c-tools/
af://n115

I2C is simulated with GPIO and the kernel has been implemented. Please refer to the
documentation:
Documentation/devicetree/bindings/i2c/i2c-gpio.txt

The following is an example of using I2C nodes at dts.

GPIO method is generally not recommended due to low efficient.

I2C FAQ

Because we have two i2c drivers, so this chapter still have two parts:

i2c-rk3x.c Driver

NACK Error

If the return value of the I2C transport interface is -6 (-ENXIO) , it is indicated as a NACK error,
that is, the slave device does not respond, this problem usually is located at peripheral. The
following are common cases:

I2C address is incorrect;
The I2C slave device is in an error working state, such as no power-on, incorrect power-on
sequence, and device error.
The I2C timing does not meet the requirements of the slave device , which also generates a
NACK signal. For example, the slave device needs the stop signal while receives the repeat
start signal, NACK signal will occur.
The I2C bus bug caused by external signal can be seen when measured with an
oscilloscope.

Timeout Error

Case 1

 i2c@4 {

 compatible = "i2c-gpio";

 gpios = <&gpio5 9 GPIO_ACTIVE_HIGH>, /* sda */

 <&gpio5 8 GPIO_ACTIVE_HIGH>; /* scl */

 i2c-gpio,delay-us = <2>; /* ~100 kHz */

 #address-cells = <1>;

 #size-cells = <0>;

 pinctrl-names = "default";

 pinctrl-0 = <&i2c4_gpio>;

 status = "okay";

 gt9xx: gt9xx@14 {

 compatible = "goodix,gt9xx";

 reg = <0x14>;

 touch-gpio = <&gpio5 11 IRQ_TYPE_LEVEL_LOW>;

 reset-gpio = <&gpio5 10 GPIO_ACTIVE_HIGH>;

 max-x = <1200>;

 max-y = <1900>;

 tp-size = <911>;

 tp-supply = <&vcc_tp>;

 status = "okay";

 };

 };

af://n120
af://n122
af://n123
af://n134
af://n135

When I2C log is timeout, ipd: 0x00, state: 1 occurs, the I2C controller is working irregularly
and it cannot generate an interrupt status, the start timing cannot be sent. There are several
possibilities:

I2C SCL or SDA Pin IO-MUX error;
The pull-up voltage of I2C is incorrect, such as insufficient voltage or with no pull-up power
supply;
The I2C pin is held by the peripheral hardware and the voltage is incorrect;
The I2C clock is not enabled, or the clock source is too small;
I2C is configured with both the CON_START and CON_STOP bits.

Case 2

When the I2C log is timeout, ipd: 0x10, state: 1 occurs, the I2C controller is working
properly, but the CPU cannot respond to the I2C interrupt. At this time, cpu0 may be blocked
(generally the I2C interrupt is on cpu0, It can be viewed by command cat /proc/interrups), or
the I2C interrupt source may be turned off make the irq can not trigger cpu to handle it.

Case 3

When the I2C log is timeout, ipd: 0x80, state: 1 occurs, the ipd is 0x80, which means that
the current SCL is held by the slave, you need to find it was held by which slave for more slave
case:

The first method is exclusion, which is applicable to the case where there are not many
peripherals, and the probability of recurrence is high;
Second method, the hardware needs to be modified. The resistor is serially connected to the
SCL bus. The voltage difference generated across the resistor is used to determine that the
lower-side peripheral is the slave that is pulled low. The selection of the resistor can not
affect the I2C transmission, which also should generate voltage difference. Generally, it can
be 1/20 of the pull-up resistor or more. And the voltage difference can also be seen if the
host pulled down the voltage. In addition, based on this, it is more intuitive to capture the
waveform through the oscilloscope. Compare the low level voltage of different slaves and
host, find the low level voltage which matches the value while problem occurring. The
corresponding slave devices or host which equals the low level voltage value is the reason to
pull down the voltage of the bus.

The common situation is that SDA is pulled down. To prove who is pulling down, also refer to the
above method of "SCL is pulled down".

i2c-rockchip.c Driver

NACK Error

If the return value of the I2C transport interface is -11(-EAGAIN) , it is indicated as a NACK error,
that is, the other device does not respond. This problem usually is located at slave devices. The
following are common cases:

I2C address is incorrect;
The I2C slave device is in an error working state, such as no power-on, incorrect power-on
sequence, and device error.
The I2C timing does not meet the requirements of the slave device, which also generates a
NACK signal. For example, the slave device needs the stop signal while receives the repeat
start signal, NACK signal will occur.
The I2C bus bug caused by external signal can be seen when measured with an oscilloscope.

af://n148
af://n150
af://n158
af://n159

Timeout Error

Case 1

When I2C log is timeout, ipd: 0x00, state: 1 occurs, the I2C controller is working irregularly
and it cannot generate an interrupt status, the start timing cannot be sent. There are several
possibilities:

I2C SCL or SDA Pin IO-MUX error;
The pull-up voltage of I2C is incorrect, such as insufficient voltage or with no pull-up power
supply;
The I2C pin is held by the peripheral hardware and the voltage is incorrect.
The I2C clock is not enabled, or the clock source is too small;
I2C is configured with both the CON_START and CON_STOP bits.

Case 2

When the I2C log is timeout, ipd: 0x10, state: 1 occurs, the I2C controller is working
properly, but the CPU cannot respond to the I2C interrupt. At this time, cpu0 may be blocked
(generally the I2C interrupt is on cpu0, It can be viewed by command cat /proc/interrups), or the
I2C interrupt source may be turned off make the irq can not trigger cpu to handle it.

Case 3

When the I2C log timeout, ipd: 0x80, state: 1 occurs, here ipd is 0x80, or the printed scl
was hold by slave , which means that the current SCL is held by the slave, you need to find it
was held by which slave for more slave case:

The firtst method is exclusion, which is applicable to the case where there are not many
peripherals, and the probability of recurrence is high;
Second method, the hardware needs to be modified. The resistor is serially connected to the
SCL bus. The voltage difference generated across the resistor is used to determine that the
lower-side peripheral is the slave that is pulled low. The selection of the resistor can not
affect the I2C transmission, which also should generate voltage difference. Generally, it can
be 1/20 of the pull-up resistor or more. And the voltage difference can also be seen if the
host pulled down the voltage. In addition, based on this, it is more intuitive to capture the
waveform through the oscilloscope. Compare the low level voltage of different slaves and
host, find the low level voltage which matches the value while problem occurring. The
corresponding slave devices or host which equals the low level voltage value is the reason to
pull down the voltage of the bus.

The common situation is that SDA is pulled down. To prove who is pulling down, also refer to the
above method of SCL is pulled down .

When the log is i2c is not in idle (state =x) occurs, it indicates that at least one I2C bus is
low. For the solution, refer to the above:

"state=1" means SDA is low;
"state=2" means SCL is low;
"state=3" means SCL and SDA are both low.

I2C waveform

If the I2C problem you meet is not mentioned here, the best way is to grab the waveform when
the I2C error occurs and analyze the I2C problem through the waveform. The waveform of I2C is
very useful, which can figure out most of the problems; You can operate to stuck the current i2c
task(sch as while(1), etc.) while error occurring, the finally captured in oscilloscope is the

af://n170
af://n171
af://n184
af://n186
af://n202

waveform for the error. If you need to filter, you can also add the condition such as the device I2C
address, etc.

	ROCKCHIP I2C Developer Guide
	I2C flow
	Trasmint only mode(I2C_CON[1:0]=2’b00)
	Mix mode (I2C_CON[1:0]=2’b01 or I2C_CON[1:0]=2’b11)
	Receive only mode (I2C_CON[1:0]=2’b10)

	I2C Driver Parameter Configuration
	Configuration for drive i2c-rk3x.c
	Configuration for driver i2c-rockchip.c

	I2C usage
	Kernel space
	User space

	I2C tools
	GPIO simulation as I2C
	I2C FAQ
	i2c-rk3x.c Driver
	NACK Error
	Timeout Error
	Case 1
	Case 2
	Case 3

	i2c-rockchip.c Driver
	NACK Error
	Timeout Error
	Case 1
	Case 2
	Case 3

	I2C waveform

