IO-Domain 开发指南

发布版本:1.0

作者邮箱: david.wu@rock-chips.com

日期:2019.01

文档密级: 公开资料

前言

一般 IO 电源的电压有 1.8v, 3.3v, 2.5v, 5.0v 等, 有些 IO 同时支持多种电压, io-domain 就是配置 IO 电源域的寄存器,依据真实的硬件电压范围来配置对应的电压寄存器,否则无法正常工作;下面有罗列出哪些 RK 芯片都需要配置 io-domain。

产品版本

芯片名称	内核版本
RK3188	4.4
RK3288	4.4
RK3036	4.4
RK312x	4.4
RK322x	4.4
RK3368	3.10
RK3368	4.4
RK3366	4.4
RK3399	4.4
RV1108	3.10
RV1108	4.4
RK3228H	3.10
RK3328	4.4
RK3326/PX30	4.4
RK3308	4.4

读者对象本文档(本指南)主要适用于以下工程师: 技术支持工程师 软件开发 工程师

修订记录

日期	版本	作者	修改说明
2019.01.28	V1.0	吴达超	

IO-Domain 开发指南

驱动文件与 DTS 节点: 驱动文件 DTS 节点 TRM 中的描述 驱动软件流程 1. 初始化配置 2. 动态配置 如何配置 io-domain 1. 通过 rockchip-io-domain.txt 文档寻找名称 2. 通过硬件原理图寻找 io-domain 配置的真实电压 3. 通过 DTS 配置 通过硬件 Pin 脚控制的电源域一般不做配置 DTS 中无定义 Regulator 情况处理 常见问题: 1. 如何确定某个 Pin 脚所在的电源域寄存器是否配置正确 2. io-domain 的寄存器不正确

驱动文件与 DTS 节点:

驱动文件

驱动文件所在位置: drivers/power/avs/rockchip-io-domain.c

DTS 节点

• 内核 3.10 版本的 DTS 节点合并:

1	io-domains {					
2	<pre>compatible = "rockchip,rk3368-io-voltage-</pre>					
	domain";					
3	rockchip,grf = <&grf>;					
4	<pre>rockchip,pmugrf = <&pmugrf>;</pre>					
5						
6	/*GRF_IO_VSEL*/					
7	<pre>dvp-supply = <&ldo7_reg>; /* DVPI0_VDD</pre>					
	*/					
8	<pre>wifi-supply = <&ldo7_reg>; /* APIO2_VDD</pre>					
	*/					
9	<pre>audio-supply = <&dcdc2_reg>; /* APIO3_VDD</pre>					
	*/					
10	<pre>sdcard-supply = <&ldo1_reg>; /* SDMMC0_VDD</pre>					
	*/					
11	<pre>gpio30-supply = <&dcdc2_reg>; /* APIO1_VDD</pre>					
	*/					
12	<pre>gpio1830-supply = <&dcdc2_reg>;/* ADIO4_VDD</pre>					
	*/					
13						
14	/*PMU_GRF_IO_VSEL*/					

• 内核 4.4 版本的 DTS 节点 GRF 和 PMUGRF 分开:

```
&io_domains {
 1
 2
            status = "okay";
 3
            dvp-supply = <&vcc_18>;
            audio-supply = <&vcc_io>;
 4
 5
            gpio30-supply = <&vcc_io>;
            gpio1830-supply = <&vcc_io>;
 6
 7
            sdcard-supply = <&vccio_sd>;
8
            wifi-supply = <&vccio_wl>;
9
   };
10
11 &pmu_io_domains {
            status = "okay";
12
13
14
            pmu-supply = <&vcc_io>;
15
            vop-supply = <&vcc_io>;
16 };
```

TRM 中的描述

很多工程师反映在 TRM 中找不到 io-domain 相关的寄存器,可以通过 TRM 来 搜索需要配置的 io-domain 寄存器描述,在 GRF/PMUGRF 章节搜索 'vsel', 'VSEL' 或者 'volsel' 索引, PMUGRF 中的 io-domain 是用来控制 PMU IO。

支持配置的两种电压1.8v/3.3v:

- 寄存器配置成1, 一般对应的电压范围是 1.62v ~ 1.98v, typical 电压 1.8v;
- 寄存器配置成0, 一般对应的电压范围是 3.00v ~ 3.60v, typical 电压 3.3v。

具体电压范围要以实际芯片的 Datasheet 为准。

驱动软件流程

下面是 rockchip-io-domain.c 驱动的软件流程图, 主要分为两个方面:

1. 初始化配置

在驱动的 probe 函数中的 supply name,获取 dts 中对应 supply name 定义的 regulator,再根据 regulator 的电压配置 io-domain 寄存器,如果是 1.8v 那一档,该 bit 配置为 1;如果是 3.3v 那一档,该 bit 配置为 0。

2. 动态配置

在初始化的过程中,会绑定 regulator,通过注册 notify 的方式,一旦这个 regulator 的电压发生变化,就会通知 io-domain 驱动更新成对应的寄存器,做 到动态更新寄存器的效果。

如何配置 io-domain

不是每个 IO 电源域都需要配置,有些 IO 的电源域是固定的,不需要配置。下面3个步骤描述如何通过软件配置 io-domian:

1. 通过 rockchip-io-domain.txt 文档寻找名称

需要在软件上通过 dts 配置的 IO 电源域在 Linux Kernel 的目录下的文件都有描述: Documentation/devicetree/bindings/power/rockchip-io-domain.txt;由于 TRM 文档和硬件原理图上对同一个 io-domain 名称描述可能有差异,在 rockchip-io-domain.txt 文档上统一描述了 TRM 与 硬件原理图上 io-domain 名称的对应关系。

例如 RK3399 Soc,通过查看 rockchip-io-domain.txt 文档,我们知道了 RK3399 的电源域需要配置包含 bt565, audio, sdmmc, gpio1830,以及 PMUGRF 下面的 pmu1830 这几个 supply,后面的 The supply connected to "***_VDD" 表示在硬件原理图上对应的名称。

Possible supplies for rk3399:

- bt656-supply: The supply connected to APIO2_VDD.
- audio-supply: The supply connected to APIO5_VDD.
- sdmmc-supply: The supply connected to SDMMC0_VDD.
- gpio1830-supply: The supply connected to APIO4_VDD.

Possible supplies for rk3399 pmu-domains:

• pmu1830-supply:The supply connected to PMUIO2_VDD.

2. 通过硬件原理图寻找 io-domain 配置的真实电压

仍以 RK3399-EVB 原理图 和 bt656 IO 电源域为例,我们在 rockchip-iodomain.txt 中找到了 bt656 对应的硬件原理图上表示为 APIO2_VDD。所以通过 逆向搜索 'APIO2_VDD' 得到 RK3399-EVB 硬件原理图上的 APIO2_VDD 电源是 由RK808 下的 VCC1V8_DVP 供给。

G31 CIF_D0 H25 CIF_D1 H30 CIF_D2 F28 CIF_D3 H29 CIF_D4 F29 CIF_D5 H27 CIF_D6 G30 CIF_D7 H28 CIF_VSYNC H31 CIF_CLKO F31 DVP_PDN0_H
J24 OAPIO2_VDDPST K23 OAPIO2_VDD

3. 通过 DTS 配置

以上两步做完后,得到了配置的名称和供电源头,在 DTS 里面找到对应的 regulator: vcc1v8_dvp,就可以在 rk3399-evb.dtsi 配置上 "bt656-supply = <&vcc1v8_dvp>;",其他的电源域配置类似。

通过硬件 Pin 脚控制的电源域一般不做配置

在 RK Soc 中的一些 IO 电源域在硬件上已经通过某个 Pin 脚来控制的,这种情况下我们 kernel 的 DTS 一般不去配置,不破坏当前的硬件状态,像 flash 和 emmc 这些模块的 IO 电源域一般都是 Pin 脚来控制的。

在 TRM 的 io-domain 寄存器描述中,我们可以看到哪些电源域是可以通过 Pin 脚来控制的,以及通过硬件上这个 Pin 脚的输入电压状态来确认当前这个电压域 的配置;也可以通过 GRF 寄存器来配置,两种选择。

例如, RK3368 Soc 的 TRM 和 RK3368-evb 的硬件原理图上有下面寄存器的描述 和硬件上 Pin 脚的配置。

• TRM 寄存器描述:

14 RW	0x0	flash_poc_ctrol flash IO domain poc control selection			
		0: controled by gpio_0b5 pad 1: controled by bit 2 of IO_VSEL			

			flash0_v18sel
2		0×1	FLASH0 IO domain 1.8V voltage selection
2	RW	0.21	1'b0: 3.3V/2.5V
			1'b1: 1.8V

• 硬件原理图:

DTS 中无定义 Regulator 情况处理

在使用的过程中可能会遇到,你找不到相应的regulator来配置,可能项目上面 未使用 pmic等电源,只是简单的拉了一个电源过来,dts 上找不到 regulator 的 定义,那么你需要在 dts 文件里面增加fixed regulator 的定义,一般 3.3v 和 1.8v 两个 regulator 就够用了。

下面是 rk3229-evb.dts 的配置例子,确定硬件上的电压是用 1.8v 还是 3.3v,配置成相应的 regulator:

```
regulators {
 1
                     compatible = "simple-bus";
 3
                      #address-cells = <1>;
                      \#size-cells = \langle 0 \rangle;
 4
 6
                      vccio_1v8_reg: regulator@0 {
                              compatible = "regulator-
    fixed";
 8
                              regulator-name = "vccio_1v8";
                              regulator-min-microvolt =
    <1800000>;
10
                              regulator-max-microvolt =
    <1800000>;
11
                              regulator-always-on;
12
                      };
13
14
                      vccio_3v3_reg: regulator@1 {
                              compatible = "regulator-
15
    fixed";
16
                              regulator-name = "vccio_3v3";
                              regulator-min-microvolt =
17
    <3300000>;
18
                              regulator-max-microvolt =
    <3300000>;
19
                              regulator-always-on;
```

```
};
21
            };
22
    &io_domains {
23
            status = "okay";
24
25
            vccio1-supply = <&vccio_3v3_reg>;
26
27
            vccio2-supply = <&vccio_1v8_reg>;
28
            vccio4-supply = <&vccio_3v3_reg>;
29
   };
```

常见问题:

1. 如何确定某个 Pin 脚所在的电源域寄存器是否配置正确

经常遇到客户报的问题是某 pin 脚的电压与所期望的不符,很有可能就是电源域 配置问题。例如,在 RK3399上,软件上代码已经让 GPIO2_B1 输出高,但是实 际通过量测发现电压不对;通过读取寄存器已经确认该 pin 脚已经将 iomux 配 置成 gpio,并且也设置成输出高,这就很有可能是 io-domain 没有配置正确。 那么这时候就要确认电源域寄存器是否配置正确,方法就是上面介绍的如何配置 电源域的相反步骤。

先确定这个 io 所在的电源域,一般是看硬件原理图或者 Datasheet 来确定。例如,RK3399下面通过硬件原理如图发现 GPIO2_B1 所在的电源域硬件上表示为 APIO2_VDD,并且 APIO2_VDD 是接的电压是VCC1V8 DVP。

U1000L RK3399-Socket	
GPIO2_A0/VOP_D0/CIF_D0/I2C2_SDA_u GPIO2_A1/VOP_D1/CIF_D1/I2C2_SCL_u GPIO2_A2/VOP_D2/CIF_D2_d GPIO2_A3/VOP_D3/CIF_D3_d GPIO2_A4/VOP_D4/CIF_D4_d GPIO2_A5/VOP_D5/CIF_D5_d GPIO2_A6/VOP_D6/CIF_D6_d GPIO2_A7/VOP_D7/CIF_D7/I2C7_SDA_u	G31 CIF_D0 H25 CIF_D1 H30 CIF_D2 F28 CIF_D3 F29 CIF_D5 H27 CIF_D6 G30 CIF_D7
GPIO2_B0/VOP_CLK/CIF_VSYNC/I2C7_SCL_u GPIO2_B1/SPI2_RXD/CIF_HREF/I2C6_SDA_u GPIO2_B2/SPI2_TXD/CIF_CLKIN/I2C6_SCL_u GPIO2_B3/SPI2_CLK/VOP_DEN/CIF_CLKOUTA_u GPIO2_B3/SPI2_CLK/VOP_DEN/CIF_CLKOUTA_u	H28 F30 GPIO2_B1 CIF_VSYNC H24 GPIO2_B2 H31 CIF_CLKO F31 DVP_PDN0_H
APIO2_VDDPST APIO2_VDD	J24 OAPIO2_VDDPST K23 OAPIO2_VDD

• 通过 rockchip-io-domain.txt 文档找到对应的名称。例如,在 rockchip-io-domain.txt 文档上找到的电源域对应的名称是 "bt656"。

_						
Рс -	pssible supplies	for The	r rk3368 supply	3 pmu-domai connected	ins to	PMUIO_VDD.
- Po	vop-supply: ossible supplies	ine 5 foi	r rk3399	connected 9:	to	
- - -	bt656-supply: audio-supply: sdmmc-supply: gpio1830	The The The The	supply supply supply supply	connected connected connected connected	to to to to	APIO2_VDD. APIO5_VDD. SDMMC0_VDD. APIO4_VDD.
Рс -	pmu1830-supplies	5 foi The	r rk3399 supply) pmu-domai connected	ins to	: PMUIO2_VDD.

在TRM上找到这个寄存器,通过 io 命令或者其他方式读取这个寄存器的值,一般基地址是GRF 或者 PMUGRF。例如,在TRM 文档上搜索到"bt656"寄存器描述,为 bit0,查看寄存器偏移为 0xe640,GRF基地址为 0xff770000。在串口终端输入"io -4 0xff77e640",得到 iodomain 寄存器值,如果该寄存器值 bit0 为1,表示 1.8v,与硬件实际电压 VCC1V8_DVP,dts 中该项配置正确;如果 bit0 为0,则表示3.3v,与硬件实际电压 VCC1V8_DVP 不符,dts 中该项配置不正确。

3	RW	0x0	gpio1833_gpio4cd_ms
2	RW	0×0	sdmmc_gpio4b_ms
1	RW	0×0	audio_gpio3d4a_ms
0	RW	0x0	bt656_gpio2ab_ms

2. io-domain 的寄存器不正确

常见的寄存器不对,可能是以下几个问题

- 所配置的 regulator 电压不对;
- 未配置 Regulator 或 Regulator 未使能;
- Regulator 比 io-domain 驱动加载更慢,获取 regulator 失败。