
Name Linux Kernel Version

RK3399 4.4

RK3399 MCU Developer Guide
ID: RK-KF-YF-123

Release Version: V1.3.0

Release Date: 2021-01-14

Security Level: □Top-Secret □Secret □Internal ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES NOT
PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH RESPECT TO
THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR ANY PARTICULAR
PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION AND CONTENT IN
THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS DOCUMENT MAY BE UPDATED
OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE UPGRADES OF THE PRODUCT OR
ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip’s registered trademarks and owned by Rockchip. All
the other trademarks or registered trademarks mentioned in this document shall be owned by
their respective owners.

All rights reserved. ©2021. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute
this document in any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

Preface

This document introduces the RK3399 Cortex-M0 Devices Generic User Guide.

Chipset Version

Intended audience
This document (this guide) is intended primarily for the following readers:

Field Application Engineer

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Revision
Date

Version Author Revision Description

2017-09-20 V1.0.0 Frank.Wang Initial version

2017-12-27 V1.1.0 Frank.Wang Modify format

2020-08-17 V1.2.0 Frank.Wang
Modify format and amend the source codes
repository

2021-01-14 V1.3.0 Frank.Wang
Rename doc's name and fix the demo show
and etc.

Software Engineer

Revision history

RK3399 MCU Developer Guide
Rockchip MCU Overview
Primary Development

Configuration Preparing
Boot Address
Address mapping
Clock Configuration
Reset Cancellation

Other Configuration
Enable JTAG Configuration

MCU Communicated with SoC
Mailbox
Share Memory

Demo Code
Fetch the Code
Code Intruduction

Directory
compiling
Interrupt Development

MCU Debug
JTAG Debug
Console Printing
Read and Write Register

Reference Document

Rockchip MCU Overview

ARM® Cortex®-M processor family provide some benefits to developers, including: simple, easy-
to-use, highly efficient, ultra-low power operation.

At the same time, the Cortex-M processor provides developers more functions at a lower cost,
which has significant advantages in code reuse and development efficiency. For this advantage, it
is widely used in the field of embedded devices. The simply introduction of Cortex-M0 is as
follows:

The Cortex-M0 processor uses the ARMv6-M architecture based on a highly integrated, low-
power 32-bit processor core; it uses the von Neumann architecture and base on the 16-bit
Thumb instruction set included Thumb-2 technology.

af://n60

Based on the above advantages of ARM® Cortex®-M, the MCUs currently integrated on the
Rockchip SoC are described below:

The RK3399 integrates two Cortex-M0s, "PMU M0" is used by ATF and the other "Perilp M0"
are open to customers developed by themselves.

Primary Development

Configuration Preparing

This chapter mainly introduces the basic method of Rockchip MCU development based on
RK3399 Perilp M0.

Boot Address

Take genetic boot way "miniloader + ATF + u-boot" as an example.

With this method, usually need to pack the MCU bin and ATF bin as "trust.img ". Therefore, the
following package configuration is required to add to the U-Boot.

As above shows, "PATH" is the storage path of MCU bin file and "ADDR" is the DDR address where
MCU load start (also means the MCU's start address). Of course, this address needs a secure
address reserved in DDR. This address will be passed to the miniloader, which will load the MCU
bin from ROM to this address of DDR.

Of course, if you use U-Boot or other loader as the first-level boot loader, you can also pack and
load the M0 firmware referred to above method.

For the MCU bin compiling, refer to chapter3.2.2 Compilation.

Address mapping

The Cortex-M0/Cortex-M3 has a fixed Memory Map, which facilitates easy porting of software
between different systems. The address space is divided into many different segments, you can
refer to Chapter 2.2 chapter Memory model in Cortex-M0 Devices Generic User Guide and
Chapter 7.4.2 in Rockchip RK3399 TRM. Commonly, we only need configuring the MCU's
0x00000000-0x1FFFFFFF address mapping.

It is note that the address mapping of the RK3399 M0 needs to be configured via SGRF, so please
be sure to configure it in the module that can access the SGRF (usually in the miniloader or ATF).
Take 2.1.1 Boot Address Load address as an example. The specific memory mapping
configuration is as follows:

Boot address configuration

tools/rk_tools/RKTRUST/RK3399TRUST.ini

...

[BL30_OPTION]

SEC=1

PATH=tools/rk_tools/bin/rk33/rk3399bl30_v1.00.bin

ADDR=0x00080000

...

sgrf_perilp_m0_con7 = 0xf << (4 + 16) | (0x080000 >> 28) & 0x0f

sgrf_perilp_m0_con15 = 0xffff << 16 | (0x80000 >> 12) & 0xffff

af://n70
af://n71
af://n73
af://n80
http://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/index.html

Peripheral address configuration

The Rockchip MCU has configured the map address of the peripheral (0x40000000-0x5FFFFFFF)
by default, which like:

ADDR_MCU = ADDR_CA72 – 0xB8000000

The peripherals here are those listed in the Rockchip RK3399 TRM Chapter 2 System Overview.

Clock Configuration

The Rockchip MCU clock source can be selected from CPLL or GPLL. Refer to the RK3399 TRM
Chapter 3 CRU. In that chapter it is point out that the CLK configuration register is
"CRU_CLKSEL_CON24 (0x0160)", where:

bit[15] : Select clock source，1’b0: CPLL；1’b1: GPLL
bit[12:8] : Set the frequency-division , which is used to configure the operating frequency of the
MCU.

U-Boot reference code

Reset Cancellation

The final step in the MCU's implement is to perform a reset cancellation. Read the register
information in the Chapter 3 CRU Rockchip RK3399 TRM . The reset cancel register of the RK3399
Perilp M0 is:

PMUCRU_SOFTRST_CON0(0x0110)

PMUCRU_SOFTRST_CON0[5:0] = 4b’0000 .

reference code

Tip: The configuration of the clock and reset can be placed where the MCU expected to run. The
Rockchip SDK is currently placed in U-Boot.

Other Configuration

Enable JTAG Configuration

arch/arm/cpu/armv8/rk33xx/clock-rk3399.c

#ifdef CONFIG_PERILP_MCU

 /* peril m0 clk = 300MHz, select gpll as the source clock */

 clk_parent_hz = RKCLK_GPLL_FREQ_HZ;

 clk_child_hz = 300000000; /* HZ */

 div = rkclk_calc_clkdiv(clk_parent_hz, clk_child_hz, 1);

 div = div ? (div - 1) : 0;

 cru_writel((1 << 31) | (0x1F << 24) | (1 << 15) | (div << 8),

 CRU_CLKSELS_CON(24));

#endif

arch/arm/cpu/armv8/rk33xx/clock-rk3399.c

#ifdef CONFIG_PERILP_MCU

 /* perilp m0 dereset */

 cru_writel(0x00160000, CRU_SOFTRSTS_CON(11));

#endif

af://n93
af://n100
af://n108
af://n109

In MCU development, it is often necessary to use JTAG to track, debug and solve problems. The
Rockchip MCU JTAG interface implements SWD (2-wire) mode and requires configuration of JTAG
iomux to connect.

The iomux configuration details of the RK3399 Perilp M0 can be found in Chapter 7.3 RK3399
TRM, including the following two registers:

MCU Communicated with SoC

Mailbox

The integrated mailbox on the Rockchip SoC has 4 channels triggered by interrupts. And data is
passed through shared memory. Rockchip MCU can communicate with SoC via the mailbox
peripheral. RK3399 Mailbox programming can be found in Chapter 21 Mailbox Rockchip RK3399
TRM ; RK3368 Mailbox refer to Chapter 11 Mailbox chapter in Rockchip RK3368 TRM.

Currently in the Linux 4.4 Kernel, the upper layer of the Mailbox Driver framework uses the ARM
SCPI protocol, so you need to enable "CONFIG_RK3368_MBOX" and
"CONFIG_RK3368_SCPI_PROTOCOL" in Kernel. At the same time, the MCU code also needs the
mail driver and SCPI protocol support.

Kernel DTS can be configured with reference to the code below.

Share Memory

The Rockchip MCU can also communicate with SoC via sharing memory. For example,
partitioning a space in INTMEM (SRAM) and configuring it to be accessible to both the master SoC
and the MCU, which implements share memory communication.

The Rockchip MCU can also communicate with the master SoC via UART or other methods.

GRF_GPIO4B_IOMUX[9:8] = 2’b10

GRF_GPIO4B_IOMUX[9:8] = 2’b10

mailbox: mailbox@ff6b0000 {

 compatible = "rockchip,rk3368-mbox-legacy";

 reg = <0x0 0xff6b0000 0x0 0x1000>,

 <0x0 0xff8cf000 0x0 0x1000>; /* the end 4k of sram */

 interrupts = <GIC_SPI 146 IRQ_TYPE_LEVEL_HIGH>,

 <GIC_SPI 147 IRQ_TYPE_LEVEL_HIGH>,

 <GIC_SPI 148 IRQ_TYPE_LEVEL_HIGH>,

 <GIC_SPI 149 IRQ_TYPE_LEVEL_HIGH>;

 clocks = <&cru PCLK_MAILBOX>;

 clock-names = "pclk_mailbox";

 #mbox-cells = <1>;

 status = "disabled";

};

mailbox_scpi: mailbox-scpi {

 compatible = "rockchip,rk3368-scpi-legacy";

 mboxes = <&mailbox 0>, <&mailbox 1>, <&mailbox 2>;

 chan-nums = <3>;

 status = "disabled";

};

af://n113
af://n114
af://n119
af://n122

Demo Code

Fetch the Code

Git repository path:

https://github.com/rockchip-linux/mcu
Refer to the rk3399-pmu-m0 branch

Code Intruduction

Directory

build：Use to store the compiled "obj" file and "bin" file.

include：Header files.

src：Source files.

The "startup.c " is the M0 entry program, which mainly includes the M0 interrupt vector
table and the interrupt execution function.
The "main.c" is the main functions of the M0 program.

compiling

The cross-compilation tool chain implements gcc-arm-none-eabi-v4.8 or newer.
The compilation method as follows:

rk-mcu>ls -R

.:

build include Makefile src

./build:

arm-gcc-link.ld RK3399M0

./build/RK3399M0:

bin obj

./build/RK3399M0/bin:

RK3399M0.bin RK3399M0.dump RK3399M0.elf RK3399M0.map

./build/RK3399M0/obj:

main.o startup.o

./include:

mcu.h rk3399.h

./src:

main.c startup.c

af://n122
af://n123
https://github.com/rockchip-linux/mcu
af://n130
af://n131
af://n141

After compiling, "build/RK3399M0/bin/RK3399M0.bin" will be generated, Then copy
"RK3399M0.bin" to the directory "tools/rk_tools/bin/rk33/ " in the U-Boot and rename it to
"rk3399bl30_v1.00.bin", After that, follow 2.1.1 Boot Address instruction, recompile U-Boot, and
packing M0 bin into trust.img .

Interrupt Development

M0 interrupt vector table can be seen at Cortex-M0 Devices Generic User Guide
Chapter 2.3 Exception model.

The reference Demo program in ”src/startup.c“ has the following reference code:

There are 16 internal exceptions of Coretex-M0 ,which from "g_pfnVectors[0]" to
"g_pfnVectors[15]", you can register and implement the reference exception handling function
according to the actual application.

The Cortex-M0 can handle 32 external interrupts, refer to "g_pfnVectors[16]" to
"g_pfnVectors[47]".

rk-mcu>make help

usage: make PLAT=<RK3399M0> <all|clean|distclean>

PLAT is used to specify which platform you wish to build.

If no platform is specified in first time, PLAT defaults to:

Supported Targets:

 all Build all the project

 clean Clean the current platform project

 distclean Clean the current project and delete .config

example: build the targets for the RK3399M0 project:

 make PLAT=RK3399M0

/**

 * The minimal vector table for a Cortex M3. Note that the proper constructs

 * must be placed on this to ensure that it ends up at physical address

 * 0x00000000.

 */

__attribute__ ((used,section(".isr_vector")))

void (* const g_pfnVectors[])(void) =

{

 /* core Exceptions */

 (void *)&pstack[STACK_SIZE], /* the initial stack pointer */

 reset_handler,

 nmi_handler,

 hardware_fault_handler,

 0,0,0,0,0,0,0,

 svc_handler,

 0,0,

 pend_sv_handler,

 systick_handler,

 /* external exceptions */

 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

};

af://n145
http://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/index.html

RK3399 Perilp M0 introduces an interrupt arbiter that extends 32 external interrupts to 256, see
Chapter 7.4.6 Interrupt Source Arbiter for PERILPM0 in Rockchip RK3399 TRM. Of course, to use
the arbiter, you are required to configure the reference mask bit. After receiving the interrupt, M0
needs to judge the specific interrupt source according to the corresponding mask bit.

The Arbiter's interface can be found in" include/rk3399.h"

M0_INT_ARB_SET_MASK() // Set interrupt mask
M0_INT_ARB_GET_FLAG() // Get interrupt bit

About the external interrupt supported by RK3399 Perilp M0 , please refer to Chapter 2.4 System
Interrupt Connection for Cortex-M0 in Rockchip RK3399 TRM.

MCU Debug

JTAG Debug

Set iomux, tck, tms about JTAG in GRF, please refer to 2.2.1 Enabling JTAG configuration.
Development board JTAG switch or "tck/tms" switch to the MCU;
DS-5, ICE or Jlink connect to MCU for debugging.

Console Printing

M0 can access the UART register directly for printing and debugging.
MCU implements the same UART as the SoC master, it is recommend to turn off M0
printing during normal operation to prevent the system being abnormal due to irregular
UART access.

Read and Write Register

The system can be stay to the U-Boot or Kernel command line and the MCU status register
can be read via io to view the MCU status.
It is also one method to write the running status of the MCU key point to the idle GRF
register and then read its value on the U-Boot or kernel command line to judge the current
running state of the MCU.

Reference Document

This section lists relevant documents published by third parties:

Cortex-M0 Devices Generic User Guide
Cortex-M0 Technical Reference Manual
Rockchip RK3399 TRM V1.4

af://n155
af://n156
af://n164
af://n170
af://n176
http://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/index.html

	RK3399 MCU Developer Guide
	Rockchip MCU Overview
	Primary Development
	Configuration Preparing
	Boot Address
	Address mapping
	Clock Configuration
	Reset Cancellation

	Other Configuration
	Enable JTAG Configuration

	MCU Communicated with SoC
	Mailbox
	Share Memory

	Demo Code
	Fetch the Code
	Code Intruduction
	Directory
	compiling
	Interrupt Development

	MCU Debug
	JTAG Debug
	Console Printing
	Read and Write Register

	Reference Document

