Rockchip SPI Developer Guide

ID: RK-KF-YF-075

Release Version: V2.5.0

Release Date: 2021-12-27

Security Level: oTop-Secret oSecret olnternal mPublic
DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP")DOES NOT
PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH RESPECT TO
THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR ANY PARTICULAR
PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION AND CONTENT IN
THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS DOCUMENT MAY BE UPDATED
OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE UPGRADES OF THE PRODUCT OR
ANY OTHER REASONS.

Trademark Statement

L~/ LU~y

"Rockchip", "Fcasl”, "I shall be Rockchip's registered trademarks and owned by Rockchip. All
the other trademarks or registered trademarks mentioned in this document shall be owned by
their respective owners.

All rights reserved. ©2021. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute
this document in any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.
No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590
Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

Preface
Overview
This article introduces the Linux SPI driver principle and basic debugging methods.

Product Version

Chipset Kernel Version
All chips develop in linux4.4 Linux 4.4

All chips develop in linux4.19 and above Linux 4.19 and above

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Intended Audience

This document (this guide) is mainly intended for:

Technical support engineers

Software development engineers

Revision History

Version

V1.0.0

V2.0.0

V2.1.0

V2.2.0

V2.3.0

V2.3.1

V2.3.2

V2.4.0

V2.5.0

Contents

Rockchip SPI Developer Guide

Author

Huibin
Hong
Dingqgiang
Lin
Dingqgiang
Lin
Dingqgiang
Lin
Dinggiang
Lin
Dingqgiang
Lin
Dinggiang
Lin
Dinggiang
Lin

Dingqgiang
Lin

Feature of Rockchip SPI
Kernel Software
Code Path
SPI Device Configuration: RK SPI As Master Port
SPI Device Configuration: RK SPI As Slave Port

SPI Device Driver

User mode SPI device Configuration

Support cs-gpios

Code Path

Date

2016-
06-29

2019-
12-09

2020-
02-13

2020-
07-14

2020-
11-02

2020-
12-11

2021-
07-06

2021-
08-31

2021-
12-27

Configuration of Linux 4.4
Configuration of Linux 4.19 and above
Tips for SPI slave test

Configuration of Linux 4.4

Change Description

Initial version

Support Linux 4.19

Adjust SPI slave configuration

Linux 4.19 DTS configuration change, Optimize
document layout

Add comment for supporting spi-bus cs-gpios
property

Update Linux 4.4 SPI slave description

Add more add configuration description, Add more
cs-gpios description

Add FAQs and reduce redundant configurations

Support Linux 5.10

Configuration of Linux 4.19 and above
SPI Testing Driver in Kernel

SPI Testing Device Configuration
Test Command

FAQ
SPI no signal
How to design application code in SPI
Delay sampling clock configuration

Feature of Rockchip SPI

The serial peripheral interface is called SPI, the following are some of the features supported by
the Linux 4.4 SPI driver:

e Motorola SPI protocol is used by default

e Supports 8-bit and 16-bit

e Software programmable clock frequency and transfer rate up to 50MHz
e Support 4 transfer mode configurations of SPI

e One or two chips selects per SPI controller

the following are some of the new features supported by the Linux 4.19 SPI driver:

e Support both slave and master mode

Kernel Software

Code Path

SPI Driver framework */

RK SPI implement of interface */

Create SPI device node for using */

SPI test driver, it needs to add to Makefile

drivers/spi/spi.c
drivers/spi/spi-rockchip.c
drivers/spi/spidev.c
drivers/spi/spi-rockchip-test.c
compiler manually. */
Documentation/spi/spidev_test.c /* SPI test tool in user state */

/%
Ve
/%
/%

SPI Device Configuration: RK SPI As Master Port

Kernel Configuration

Device Drivers --->
[*] SPI support --->
<*> Rockchip SPI controller driver

DTS Node Configuration

&spil { //Quote SPI controller node
status = "okay";
//assigned-clock-rates = <200000000>; //Not configured by
default, the corresponding clock completes the assignment when parsing DTS
dma-names = "tx","rx"; //Enable DMA mode, it is not

recommended if the general communication byte is Tess than 32 bytes, set the
null assignment to remove the enable, such as "dma-names;";

af://n93
af://n110
af://n111
af://n113

//rx-sample-delay-ns = <10>; //Not configured by default, Read
sampling delay. Please refer to "FAQ" and "Delay sampling clock configuration"
for details

spi_test@l0 {

compatible ="rockchip,spi_test_busl_cs0"; //The name corresponding to
the driver

reg = <0>; //Chip select 0 or 1

spi-cpha; //1f configure it, cpha is 1

spi-cpol; //1f configure it,cpol is 1, the clk
pin remains high Tlevel.

spi-1sb-first; //10 firstly transfer 1sb

status = "okay"; //Enable device node

spi-max-frequency = <24000000>; //This is clock frequency of SPI clk
output,witch does not exceed 50M.
};
3

Configuration instructions for spiclk assigned-clock-rates and spi-max-frequency:

e spi-max-frequency is the output clock of SPI. spi-max-frequency is output after internal
frequency division of SPI working clock spiclk in assigned-clock-rates. Since there are at least
2 internal frequency divisions, the relationship is that SPI assigned clock rates > =2 * SP|
Max frequency;

e Assume that we want 50MHz SPI 10 rate, the configuration can be set as: spiclk assigned-
clock-rates = <100000000>, spi-max-frequency = <50000000>.

e spiclk assigned-clock-rates should not be lower than 24M, otherwise there may be
problems.

e |f you need to configure spi-cpha, spiclk assigned-clock-rates <= 6M, 1M <= spi-max-
frequency >= 3M.

SPI Device Configuration: RK SPI As Slave Port

The interfaces "spi_read" and "spi_write" of SPI slave are the same as SPI master.
Configuration of Linux 4.4

Kernel Patch

please check if your code contains the following patches, if not, please add the patch:

diff --git a/drivers/spi/spi-rockchip.c b/drivers/spi/spi-rockchip.c
index 060806e..38eecdc 100644
--- a/drivers/spi/spi-rockchip.c
+++ b/drivers/spi/spi-rockchip.c
@@ -519,6 +519,8 @@ static void rockchip_spi_config(struct rockchip_spi *rs)
cr0 |= ((rs->mode & 0x3) << CRO_SCPH_OFFSET);
cr0 |= (rs->tmode << CRO_XFM_OFFSET);
cr0 |= (rs->type << CRO_FRF_OFFSET);
if (rs->mode & SPI_SLAVE_MODE)
cr0 |= (CRO_OPM_SLAVE << CRO_OPM_OFFSET);

if (rs->use_dma) {
if (rs->tx)

@@ -734,7 +736,7 @@ static int rockchip_spi_probe(struct platform_device *pdev)

master‘—>auto_runt‘ime_pm = true;

af://n128
af://n130

master->bus_num = pdev->id;
= master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
+ master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_SLAVE_MODE;
master->num_chipselect = 2;
master->dev.of_node = pdev->dev.of_node;
master->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8);
diff --git a/drivers/spi/spi.c b/drivers/spi/spi.c
index deelch8..4172dal 100644
--- a/drivers/spi/spi.c
+++ b/drivers/spi/spi.c
@@ -1466,6 +1466,8 @@ of_register_spi_device(struct spi_master *master, struct
device_node *nc)
spi->mode |= SPI_3WIRE;
if (of_find_property(nc, "spi-lsb-first", NULL))
spi->mode |= SPI_LSB_FIRST;
if (of_find_property(nc, "spi-slave-mode", NULL))
spi->mode |= SPI_SLAVE_MODE;

/* Device DUAL/QUAD mode */
if (lof_property_read_u32(nc, "spi-tx-bus-width", &value)) {
diff --git a/include/1linux/spi/spi.h b/include/Tinux/spi/spi.h
index cce80e6..ce2cec6 100644
--- a/include/1inux/spi/spi.h
+++ b/include/Tlinux/spi/spi.h
@@ -153,6 +153,7 @@ struct spi_device {

#define SPI_TX_QUAD 0x200 /* transmit with 4 wires
&
#define SPI_RX_DUAL 0x400 /* receive with 2 wires
*/
#define SPI_RX_QUAD 0x800 /* receive with 4 wires
*/
+#define SPI_SLAVE_MODE 0x1000 /* enable SPI slave mode
*/

int irq;

void *controller_state;

void *controller_data;

DTS configuration:

&spil0 {

assigned-clocks = <&pmucru CLK_SPIO>; //To specify SPI SCLK, you
can view the clock named spiclk in dtsi

assigned-clock-rates = <200000000>; //The corresponding clock

completes the assignment when parsing DTS
spi_test@01 {

compatible = "rockchip,spi_test_busO_csl";

id = <1>;

reg = <1>;

//spi-max-frequency = <24000000>; is no need
spi-slave-mode; //if enble slave mode,just modify here

¥

Note:

1. The working clock must be more than 6 times of the IO clock sent by the master. For
example, if the assigned-clock-rates are < 48000000 >, then the clock sent by the master
must be less than 8MHz

2. The Linux 4.4 framework does not make special optimization for SPI slave, so there are two
kinds of transmission states:

1. DMA transmission: after transmission initiation, the process enters the timeout
mechanism of waiting for completion, and the DMA names of DMA transmission can
be closed by adjusting "DMA names;" by DTS

2. CPU transmission: while waits for the transmission to complete in the underlying
driver, and CPU is busy

3. Using RK SPI as a slave, you can consider the following scenarios:

1. Turn off DMA and block transmission only with CPU

2. If the transmission is set to be greater than 32 bytes, DMA transmission is used, and
the transmission waiting for completion timeout mechanism

3. AGPIO is added between the master and slave devices, and the master device outputs
the message to the slave device to transfer ready to reduce the CPU busy waiting time

Configuration of Linux 4.19 and above

Kernel Configuration

Device Drivers --->
[*] SPI support --->
[*] SPI slave protocol handlers

DTS configuration

&spil {
status = "okay";
dma-names = "tx","rx";
spi-slave; //enable slave mode
slave { //As spi-bus requied,

SPI slave sub-node should name start with "sTave"
compatible ="rockchip,spi_test_busl _cs0";
reg = <0>;

id = <0>;
};
i

Note:

e |n the actual use scenario, we can consider adding a GPIO between the master and the
slave, and the master device outputs to notify the slave device to transfer ready to reduce
the CPU busy waiting time

Tips for SPI slave test

If SPI working as slave, you must start" slave read" and then start "master write". Otherwise, the
slave will not finish reading and the master has finished writing.

If it is slave write , then master read, also needs to start slave write first, because only slave sends
clock, slave will work, and master will sent or received data immediately.

Based on the third chapter:

af://n156
af://n165

First slave: echo write 0 1 16 > /dev/spi_misc_test

Then master: echo read 0 1 16 > /dev/spi_misc_test

SPI Device Driver

Register device driver:

#include <linux/init.h>

#include <linux/module.h>

#include <linux/platform_device.h>
#include <linux/of.h>

#include <linux/spi/spi.h>

static int spi_test_probe(struct spi_device *spi)
{

int ret;

if(!spi)
return -ENOMEM;

spi->bits_per_word= 8;

ret= spi_setup(spi);

if(ret < 0) {
dev_err(&spi->dev,"ERR: fail to setup spi\n');
return-1;

return ret;

static int spi_test_remove(struct spi_device *spi)
{

printk("%s\n",_func_);

return 0;

static const struct of_device_id spi_test_dt_match[]= {
{.compatible = "rockchip,spi_test_busl_cs0", },
{.compatible = "rockchip,spi_test_busl_csl", },
{3,

55

MODULE_DEVICE_TABLE(of, spi_test_dt_match);

static struct spi_driver spi_test_driver = {
.driver = {
"spi_test",
THIS_MODULE,
.of_match_table = of_match_ptr(spi_test_dt_match),

.name

.owner

3,
.probe = spi_test_probe,
.remove = spi_test_remove,

e

static int _init spi_test_init(void)
{
int ret = 0;
ret = spi_register_driver(&spi_test_driver);

af://n171

return ret;

}

module_init(spi_test_init);

static void _exit spi_test_exit(void)

{

return spi_unregister_driver(&spi_test_driver);

}

module_exit(spi_test_exit);
For SPI read and write operations, please refer to include/Tinux/spi/spi.h.

static inline int

spi_write(struct spi_device *spi,const void *buf, size_t len)

static inline int

spi_read(struct spi_device *spi,void *buf, size_t len)

static inline int

spi_write_and_read(structspi_device *spi, const void *tx_buf, void *rx_buf,
size_t Tlen)

User mode SPI device Configuration

User mode SPI device means operating the SPI interface in user space directly, which makes it
convenient for many SPI peripheral drivers run in user space.

There is no need to change the kernel to facilitate driver development.

Kernel Configuration

Device Drivers --->
[*] SPI support --->
[*] User mode SPI device driver support

DTS Configuration

&spi0 {
status = "okay";
max-freq = <50000000>;
spi_test@00 {
compatible = "rockchip,spidev";
reg = <0>;
spi-max-frequency = <5000000>;
b
if;

Using Instruction

After the driver device is successfully registered, a device like this name will be displayed:
/dev/spidev1.1

For the demo of spidev operation, please refer to:

e Kernel 4.4 Documentation/spi/spidev_test.c

e Kernel 4.19 and later tools/spi/spidev_test.c

e After the kernel project is compiled, enter the corresponding path and enter the following
command to directly compile the standard SPI app program:

af://n176

make CROSS_COMPILE=~/path-to-toolchain/gcc-xxxxx-toolchain/bin/xxxx-1inux-gnu-
Choose kernel toolchain

e |t supports the configuration of SPI slave devices. Refer to "SPI Device Configuration: RK SPI
As Slave Port", in which the DTS configuration sub node should remain "rockchip, spidev"

Support cs-gpios

Users can use the cs-gpios attribute of spi-bus to implement gpio simulation cs to extend SPI chip
selection signal. Users can refer to the kernel document
Documentation/devicetree/bindings/spi/spi-bus.txt tolearn more about cs-gpios.

Configuration of Linux 4.4

This support needs more support patches. Please contact RK Engineer for the corresponding
patches.

Configuration of Linux 4.19 and above

Take spi1_cs2n in GPIO0_C4 for example:

Set the cs-gpio pin and reference it in the SPI node

diff --git a/arch/arm/boot/dts/rv1126-evb-v10.dtsi b/arch/arm/boot/dts/rv1126-
evb-v10.dtsi

index 144e9edf1831..cl7ac362289e 100644

--- a/arch/arm/boot/dts/rv1126-evb-v10.dtsi

+++ b/arch/arm/boot/dts/rv1126-evb-v10.dtsi

&pinctrl {

+

+ spil {

+ spil_csOn: spil-cslin {

+ rockchip,pins =

+ <0 RK_PC2 RK_FUNC_GPIO

&pcfg_pull_up_drv_Tlevel_0>;

+ s

+ spil_csln: spil-csln {

+ rockchip,pins =

+ <0 RK_PC3 RK_FUNC_GPIO
&pcfg_pull_up_drv_Tlevel_0>;

+ bE

+ spil_cs2n: spil-cs2n {

+ rockchip,pins =

+ <0 RK_PC4 RK_FUNC_GPIO
&pcfg_pull_up_drv_Tevel_0>;

i };

+ s

55

diff --git a/arch/arm/boot/dts/rv1126.dtsi b/arch/arm/boot/dts/rv1126.dtsi
index 351bc668ea42..986a85f13832 100644

--- a/arch/arm/boot/dts/rv1126.dtsi

+++ b/arch/arm/boot/dts/rv1126.dtsi

spil: spi@ff5b0000 {

af://n197
af://n199
af://n201

compatible = "rockchip,rvl126-spi", "rockchip,rk3066-spi";
reg = <Oxff5b0000 0x1000>;

interrupts = <GIC_SPI 11 IRQ_TYPE_LEVEL_HIGH>;
#address-cells = <1>;

#size-cells = <0>;

clocks = <&cru CLK_SPI1>, <&cru PCLK_SPI1>;

clock-names = "spiclk", "apb_pclk";

dmas = <&dmac 3>, <&dmac 2>;

dma-names = "tx", "rx";

pinctrl-names = "default", "high_speed";

- pinctr1-0 = <&spilm0_clk &spilm0_csOn &spilmO_csln &spilmO_miso
&spilmO_mosi>;

- pinctrl-1 = <&spilmO_clk_hs &spilm0_csOn &spilm0_csln &spilmO_miso_hs
&spilm0_mosi_hs>;

+ pinctr1-0 = <&spilmO_clk &spil_csOn &spil_csln &spil_cs2n &spilmO_miso
&spilmO_mosi>;

+ pinctrl-1 = <&spilmO_clk_hs &spil_csOn &spil_csln &spil_cs2n

&spilmO_miso_hs &spilm0_mosi_hs>
status = "disabled";

e

SPI node reassigns CS pin

+&spil {

+ status = "okay";

+ max-freq = <48000000>;

+ cs-gpios = <&gpio0 RK_PC2 GPIO_ACTIVE_LOW>, <&gpio0 RK_PC3

GPIO_ACTIVE_LOW>, <&gp‘iOO RK_PC4 GPIO_ACTIVE_LOW>;
spi_test@00 {
compatible

"rockchip,spi_test_busl _cs0";

spi_test@02 {
compatible = "rockchip,spi_test_busl_cs2";
id = <2>;
reg = <0x2>;
spi-cpha;
spi-cpol;
spi-Isb-first;
spi-max-frequency = <16000000>;

“ o4+ o+ o+ o+ + o+

Note:

e |f you want to extend cs with gpio, all cs should be converted to gpio function and supported

by cs-gpios property.

SPI Testing Driver in Kernel

Code Path

drivers/spi/spi-rockchip-test.c

SPI Testing Device Configuration

Kernel Path

af://n211
af://n212
af://n214

drivers/spi/Makefile
+0bj-y += spi-rockchip-test.o

DTS Configuraion

&spil0 {
status = "okay";
spi_test@00 {
compatible = "rockchip,spi_test_bus0O_cs0";
id = <0>; //This attribute is used to distinguish different SPI
slave devices in "spi-rockchip-test.c".
reg = <0>; //chip select 0:csO 1l:csl
spi-max-frequency = <24000000>; //spi output clock
i;
spi_test@01 {
compatible = "rockchip,spi_test_busO_csl";
id = <1>;
reg = <1>;
spi-max-frequency = <24000000>;
3
if;
Driver log

[0.457137]
rockchip_spi_test_probe:name=spi_test_bus0_cs0,bus_num=0,cs=0,mode=11, speed=1600
0000

[0.457308]
rockchip_spi_test_probe:name=spi_test_bus0_csl,bus_num=0,cs=1,mode=11,speed=1600
0000

Test Command

echo write 0 10 255 > /dev/spi_misc_test
echo write 0 10 255 init.rc > /dev/spi_misc_test
echo read 0 10 255 > /dev/spi_misc_test
echo Toop 0 10 255 > /dev/spi_misc_test
echo setspeed 0 1000000 > /dev/spi_misc_test
The above means:
Echo type id number of loops transfer length > /dev/spi_misc_test

Echo setspeed id frequency (in Hz) > /dev/spi_misc_test

You can modify the test case by yourself if you want.

FAQ

SPI no signal

e Confirm that the driver is running before debugging

e Ensure that the IOMUX configuration of the SPI 4 pins is correct .

af://n221
af://n227
af://n228

e Confirm that during the TX sending, the TX pin has a normal waveform, CLK has a normal
CLOCK signal, and the CS signal is pulled low.

e |f the clock frequency is high, considering increasing the drive strength to improve the
signal.
e How to simply judge whether SPI DMA is enabled or not? If the serial port printing does not

have the following keywords, DMA is enabled successfully:

[0.457137] Failed to request TX DMA channel
[0.457237] Failed to request RX DMA channel

How to design application code in SPI

Please select the appropriate object function interface before writing the driver.
Custom SPI device driver

Refer to "SPI Device Driver", for example: drivers/spi/spi-rockchip-test.c.
Application program based on spidev standard device node

Refer to "User mode SPI device Configuration”

Delay sampling clock configuration

In the case of high SPI IO rate, the normal SPI mode may still not match the output delay of
external devices, and RK SPI master read may not be able to sample valid data. SPI RSD logic
needs to be enabled to delay the sampling clock.

RK SPI RSD (read sample delay) control logic has the following characteristics:

e The assignable values are 0, 1, 2,3
e The delay unitis 1 spi_clk cycle, i.e. the working clock of the controller, see "SPI Device
Configuration" for details

rx-sample-delay actual delay is the RSD effective value closest to the DTS set value, subject to
spi_clk 200MHz, cycle 5ns, for example:

The actual configurable delay of RSD is 0, 5ns, 10ns and 15ns. RX sample delay is set to 12ns,
which is close to the effective value of 10ns, so the final delay is 10ns.

af://n241
af://n247

	Rockchip SPI Developer Guide
	Feature of Rockchip SPI
	Kernel Software
	Code Path
	SPI Device Configuration: RK SPI As Master Port
	SPI Device Configuration: RK SPI As Slave Port
	Configuration of Linux 4.4
	Configuration of Linux 4.19 and above
	Tips for SPI slave test

	SPI Device Driver
	User mode SPI device Configuration
	Support cs-gpios
	Configuration of Linux 4.4
	Configuration of Linux 4.19 and above

	SPI Testing Driver in Kernel
	Code Path
	SPI Testing Device Configuration
	Test Command

	FAQ
	SPI no signal
	How to design application code in SPI
	Delay sampling clock configuration

