
Chipset Kernel Version

All chips using Linux Kernel 3.10 Linux Kernel 3.10

All chips using Linux Kernel 4.4 and above Linux Kernel 4.4 and above

UART Development Guide  
ID: RK-KF-YF-089

Release Version: V1.5.0

Release Date: 2021-12-22

Security Level: □Top-Secret   □Secret   □Internal   ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES NOT 
PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH RESPECT TO 
THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR ANY PARTICULAR 
PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION AND CONTENT IN 
THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS DOCUMENT MAY BE UPDATED 
OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE UPGRADES OF THE PRODUCT OR 
ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip’s registered trademarks and owned by Rockchip. All 
the other trademarks or registered trademarks mentioned in this document shall be owned by 
their respective owners.

All rights reserved. ©2021. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute 
this document in any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website:     www.rock-chips.com

Customer service Tel:  +86-4007-700-590

Customer service Fax:  +86-591-83951833

Customer service e-Mail:  fae@rock-chips.com

Preface

Overview

This article mainly explains the use and debugging method of Rockchip series chip UART. 
Including UART as a common serial port and console in two different usage scenarios.

Product Version

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com


Version Author Date Change Description

V1.0.0 Huibin Hong 2017-12-21 Initial version

V1.1.0 Huibin Hong 2019-02-14 Updated version

V1.2.0 Huibin Hong 2019-11-13 Support Linux Kernel 4.19

V1.3.0 Huibin Hong 2020-02-26 Add the document header

V1.4.0 Steven Liu 2021-03-15 Updated version

V1.5.0 Steven Liu 2021-12-22 Updated version

Intended Audience

This document (this guide) is mainly intended for:

Technical support engineers

Software development engineers

Revision History

Contents

UART Development Guide
Features
As a normal serial port

Driver path
menuconfig configuration
dts configuration
Baud rate configuration
Use DMA
Use hardware automatic flow control
Use serial port to wake up the system
Device registration

As a console
Driver path
menuconfig configuration
dts configuration
parameter.txt configuration

Driver debugging
Test sending data
Test receiving data
Test internal loopback
Test flow control

Features  

Rockchip UART (Universal Asynchronous Receiver/Transmitter) is based on the 16550A serial port 
standard. The complete module supports the following functions:

af://n79


Supports 5, 6, 7, 8 bits of data.
Support 1, 1.5, 2 bits stop bits.
Support odd check and even check, mark check and space check are not supported.
Support receiving FIFO and sending FIFO, generally 32 bytes or 64 bytes.
Supports up to 4M baud rate, the actual support of baud rate requires the cooperation of 
chip clock frequency division strategy.
Support interrupt transfer mode and DMA transfer mode.
Support hardware automatic flow control, RTS+CTS.

Note that the features supported by the UART in the actual chip are subject to the description in 
the UART chapter of the chip manual, and some UART features will be appropriately tailored.

As a normal serial port  

Driver path  

In Linux kernel 3.10, the following driver files are used:

In Linux kernel 4.4 and Linux kernel 4.19, the 8250 serial port universal driver is used. The 
following are the main driver files:

menuconfig configuration  

In different versions of Linux kernel, the UART-related menuconfig configuration is in the 
following path options. The description of the options is very detailed and will not be expanded 
here:

It is recommended to use the UART default configuration provided in Rockchip SDK.

dts configuration  

In different versions of Linux kernel, the dts configuration of UART is similar to the following 
typical configuration. The following typical configuration takes Linux kernel 4.19 RK3568 chip as 
an example, in rk3568.dtsi:

drivers/tty/serial/rk_serial.c

drivers/tty/serial/8250/8250_core.c     # 8250 serial driver core

drivers/tty/serial/8250/8250_dw.c       # Synopsis DesignWare 8250 serial driver

drivers/tty/serial/8250/8250_dma.c      # 8250 serial DMA driver

drivers/tty/serial/8250/8250_port.c     # 8250 serial port operation

drivers/tty/serial/8250/8250_early.c    # 8250 serial early console driver

Device Drivers  --->

    Character devices  --->

        Serial drivers  --->

uart1: serial@fe650000 {

    compatible = "rockchip,rk3568-uart", "snps,dw-apb-uart";

    reg = <0x0 0xfe650000 0x0 0x100>;

    interrupts = <GIC_SPI 117 IRQ_TYPE_LEVEL_HIGH>;

    clocks = <&cru SCLK_UART1>, <&cru PCLK_UART1>;

    clock-names = "baudclk", "apb_pclk";

af://n97
af://n98
af://n103
af://n107


Only the following parameters of the board-level dts configuration of UART are allowed to be 
modified:

dma-names：

"tx" Enable tx dma
"rx" Enable rx dma
"!tx" Disable tx dma
"!rx" Disable rx dma

pinctrl-0：

&uart1m0_xfer Configure tx and rx pins as iomux group 0
&uart1m1_xfer Configure tx and rx pins as iomux group 1
&uart1m0_ctsn and &uart1m0_rtsn Configure hardware automatic flow control cts and 
rts pins as iomux group 0
&uart1m1_ctsn and &uart1m1_rtsn Configure hardware automatic flow control cts and 
rts pins as iomux group 1

status：

"okay" Enable
"disabled" Disable

For example, turn on RK3568 UART1, turn on dma, configure the tx, rx, cts, rts iomux of UART1 
with hardware automatic flow control turned on as group0, the configuration in the board-level 
dts is as follows:

It should be noted that the operation of the hardware automatic flow control in the parameter 
pinctrl-0 is only the configuration of rts and cts pins iomux. The actual operation of enabling the 
hardware automatic flow control is in the UART driver. If you do not need to use the hardware 
automatic flow control, the configuration of rts and cts pins iomux can be removed.

Baud rate configuration  

UART baud rate = working clock source / internal frequency division coefficient / 16. When the 
working clock source is directly provided by the 24M crystal oscillator, the UART will use the 
internal frequency coefficient to obtain the required baud rate. When the working clock source is 
provided by the CRU module through PLL frequency division, the UART baud rate is generally 
1/16 of the working clock source. The baud rate that UART actually allows to configure and the 
stability of data transmission under this baud rate are mainly determined by the UART working 
clock division strategy in software.

    reg-shift = <2>;

    reg-io-width = <4>;

    dmas = <&dmac0 2>, <&dmac0 3>;

    dma-names = "tx", "rx";

    pinctrl-names = "default";

    pinctrl-0 = <&uart1m0_xfer>;

    status = "disabled";

};

&uart1 {

    dma-names = "tx", "rx";

    pinctrl-names = "default";

    pinctrl-0 = <&uart1m0_xfer &uart1m0_ctsn &uart1m0_rtsn>;

    status = "okay";

};

af://n144


At present, the UART driver will automatically obtain the required working clock frequency 
according to the configured baud rate. The UART working clock frequency can be queried by the 
following command:

Rockchip UART ensures stable support for commonly used baud rates such as 115200, 460800, 
921600, 1500000, 3000000, 4000000, etc. For some special baud rates, it may be necessary to 
modify the working clock frequency division strategy to support it.

Use DMA  

UART uses the DMA transfer mode to produce a more obvious effect of reducing the load on the 
CPU only when the amount of data is large. Under normal circumstances, compared with using 
interrupt transfer mode, UART using DMA transfer mode does not necessarily increase the data 
transmission speed. On the one hand, CPU performance is very high now, and the transmission 
bottleneck lies in the peripherals. On the other hand, starting DMA needs to consume extra 
resources, and because the UART data has the characteristic of uncertain length, it will reduce the 
DMA transmission efficiency.

Therefore, it is recommended to use the default interrupt transmission mode in general, and the 
following prints will be made:

In scenarios where DMA channel resources are tight, you can consider turning off TX DMA 
transmission, and the following prints will appear:

Use hardware automatic flow control  

When the UART uses hardware automatic flow control, you need to ensure that the UART driver 
enables the hardware automatic flow control function, and the iomux of the cts and rts flow 
control pins has been switched in the dts. It is recommended to use hardware automatic flow 
control in high baud rate (1.5M baud rate and above) and large data volume scenarios, that is, 
use four-wire UART.

Use serial port to wake up the system  

The serial port wake-up function is to keep the serial port open when the system is in standby, 
and set the serial port interrupt as the wake-up source. When using, you need to add the 
following parameters in dts:

Note that the serial port wake-up system needs to modify the trust firmware at the same time, 
please contact Rockchip for support.

Device registration  

cat /sys/kernel/debug/clk/clk_summary | grep uart

failed to request DMA, use interrupt mode

got rx dma channels only

&uart1 {

    wakeup-source;

}；

af://n149
af://n155
af://n157
af://n161


After enabling UART in dts, you can see the following corresponding print in the system startup 
log, indicating that the device is registered normally:

Ordinary serial devices will number the serial ports according to the aliase in dts and register 
them as ttySx devices. The aliases in dts are as follows:

If you need to register uart3 as ttyS1, you can make the following modifications:

As a console  

Driver path  

Rockchip UART is used as the console and uses the fiq_debugger process. Rockchip SDK generally 
configures uart2 as a ttyFIQ0 device. Use the following driver files:

menuconfig configuration  

In different versions of Linux kernel, the menuconfig configuration related to fiq_debugger is in 
the following path options:

It is recommended to use the default configuration of Rockchip SDK.

dts configuration  

fe650000.serial: ttyS1 at MMIO 0xfe650000 (irq = 67, base_baud = 1500000) is a 

16550A

aliases {

    serial0 = &uart0;

    serial1 = &uart1;

    serial2 = &uart2;

    serial3 = &uart3;

    ......

aliases {

    serial0 = &uart0;

    serial1 = &uart3;

    serial2 = &uart2;

    serial3 = &uart1;

    ......

drivers/staging/android/fiq_debugger/fiq_debugger.c # Driver files

drivers/soc/rockchip/rk_fiq_debugger.c              # Platform implementation of 

kernel 4.4 and later

arch/arm/mach-rockchip/rk_fiq_debugger.c            # Platform implementation of 

kernel 3.10

Device Drivers  --->

    [*] Staging drivers  --->

        Android  --->

af://n168
af://n169
af://n172
af://n176


Taking Linux kernel 4.19 RK3568 as an example, the fiq_debugger node configuration in dts is as 
follows. Since fiq_debugger and ordinary serial ports are mutually exclusive, the corresponding 
ordinary serial port uart node must be disabled after the fiq_debugger node is enabled.

Several parameters are described below:

rockchip, serial-id: UART number used. Modify the serial-id to a different UART, the 
fiq_debugger device will also be registered as a ttyFIQ0 device.
rockchip, irq-mode-enable: Configure to 1 to use irq interrupt, and to 0 to use fiq interrupt.
interrupts: Auxiliary interrupts configured, just keep the default.

parameter.txt configuration  

If you use Linux kernel 3.10 and Linux kernel 4.4, you need to make sure that there are the 
following specific commands for the console in the parameter.txt file:

Driver debugging  

Rockchip UART debugging provides a test program ts_uart.uart, two test files send_0x55 and 
send_00_ff, which can be obtained from Rockchip FAE.

Place the test program in an executable path on the development board through the adb tool. 
Place the following in the data path for example:

Modify the test program permissions on the development board:

chosen: chosen {

    bootargs = "earlycon=uart8250,mmio32,0xfe660000 console=ttyFIQ0";

};

fiq-debugger {

    compatible = "rockchip,fiq-debugger";

    rockchip,serial-id = <2>;

    rockchip,wake-irq = <0>;

    /* If enable uart uses irq instead of fiq */

    rockchip,irq-mode-enable = <1>;

    rockchip,baudrate = <1500000>;  /* Only 115200 and 1500000 */

    interrupts = <GIC_SPI 252 IRQ_TYPE_LEVEL_LOW>;

    pinctrl-names = "default";

    pinctrl-0 = <&uart2m0_xfer>;

    status = "okay";

};

&uart2 {

    status = "disabled";

};

CMDLINE: console=ttyFIQ0 androidboot.console=ttyFIQ0

adb root

adb remount

adb push ts_uart.uart /data

adb push send_0x55 /data

adb push send_00_ff /data

af://n187
af://n190


Use the following command to get program help:

Test sending data  

The commands sent in the test are as follows, send_0x55 and send_00_ff are the files to be sent:

The successful transmission can be connected to the PC through the USB to UART board, and the 
serial port debugging tool on the PC can be used to verify.

Test receiving data  

The commands received in the test are as follows, receive_0x55 is the received file:

You can use the PC-side serial port debugging tool to send data. The test program will 
automatically detect that U (0x55) is received correctly. If other characters are detected, the 
hexadecimal ASCII code value will be printed. You can check whether the reception is correct.

Test internal loopback  

The commands loopback in the test are as follows:

su

chmod +x /data/ts_uart.uart

console:/ # ./data/ts_uart.uart

 Use the following format to run the HS-UART TEST PROGRAM

 ts_uart v1.1

 For sending data:

 ./ts_uart <tx_rx(s/r)> <file_name> <baudrate> <flow_control(0/1)> <max_delay(0-

100)> <random_size(0/1)>

 tx_rx : send data from file (s) or receive data (r) to put in file

 file_name : file name to send data from or place data in

 baudrate : baud rate used for TX/RX

 flow_control : enables (1) or disables (0) Hardware flow control using RTS/CTS 

lines

 max_delay : defines delay in seconds between each data burst when sending. 

Choose 0 for continuous stream.

 random_size : enables (1) or disables (0) random size data bursts when sending. 

Choose 0 for max size.

 max_delay and random_size are useful for sleep/wakeup over UART testing. ONLY 

meaningful when sending data

 Examples:

 Sending data (no delays)

 ts_uart s init.rc 1500000 0 0 0 /dev/ttyS0

 loop back mode:

 ts_uart m init.rc 1500000 0 0 0 /dev/ttyS0

 receive, data must be 0x55

 ts_uart r init.rc 1500000 0 0 0 /dev/ttyS0

./data/ts_uart.uart s ./data/send_0x55 1500000 0 0 0 /dev/ttyS1

./data/ts_uart.uart s ./data/send_00_ff 1500000 0 0 0 /dev/ttyS1

./data/ts_uart.uart r ./data/receive_0x55 1500000 0 0 0 /dev/ttyS1

af://n198
af://n202
af://n206


Press Ctrl+C to stop the test, you can observe the end log as follows. Compare whether the sent 
and received data are consistent:

If the test fails, it means that there is a problem with the current serial port or other programs are 
using the same serial port at the same time. You can use the following command to check that 
these programs have opened the serial port:

Test flow control  

To test CTS, first manually pull up the CTS pin level, and then use the following commands to 
send data:

When the CTS level is pulled high, sending data is blocked. When the CTS level is released to a low 
level, the blocked data is sent.

To test RTS, confirm by measuring whether the RTS pin level can be pulled up and down normally.

./data/ts_uart.uart m ./data/send_00_ff 1500000 0 0 0 /dev/ttyS1

Sending data from file to port...

send:1172, receive:1172 total:1172 # Consistent data sent and received, the test 

succeeded

send:3441, receive:3537 total:3441 # Inconsistent data sent and received, the 

test failed

lsof | grep ttyS1

./data/ts_uart.uart s ./data/send_0x55 1500000 1 0 0 /dev/ttyS1

af://n213

	UART Development Guide
	Features
	As a normal serial port
	Driver path
	menuconfig configuration
	dts configuration
	Baud rate configuration
	Use DMA
	Use hardware automatic flow control
	Use serial port to wake up the system
	Device registration

	As a console
	Driver path
	menuconfig configuration
	dts configuration
	parameter.txt configuration

	Driver debugging
	Test sending data
	Test receiving data
	Test internal loopback
	Test flow control



