
Product name Kernel version

All chips All kernel versions

Date Version Author Revision description

2019.08.31 V1.0 Chen Liang Initial version

Power consumption analysis and
optimization

Release version:1.0

Author e-mail:cl@rock-chips.com

Date:2019.08.31

Security classification: Public

Preface

Overview

This document mainly describes some basic concepts and optimization methods of power consumption for
RK platform chips.

Product version

Applicable object

This document (the guide) is mainly suitable for below engineers:

Field application engineers

Software development engineers

Revision history

Power consumption analysis and optimization
1. Basic concept

1.1 Frequency (clk) and voltage
1.2 Voltage domain(VD) and power domain(PD)
1.3 DCDC (Direct Current) and LDO (Low dropout regulator)
1.4 Static power consumption and dynamic power consumption
1.5 DVFS(Dynamic Voltage and Frequency Scaling), CPUFREQ and DEVFREQ

2. Power consumption measurement

af://n0
mailto:cl@rock-chips.com

2.1 Measurement method
2.2 Measurement tool

3. Power consumption data analysis
3.1 Calculate theoretical power consumption
3.2 Compare with EVB data
3.3 Data analysis for each path

3.3.1 VDD_CORE/VDD_CPU/VDD_ARM
3.3.2 VDD_GPU
3.3.3 VDD_LOGIC
3.3.4 VCC_DDR
3.3.5 VCC_IO

3.4 Common scenario analysis
3.4.1 Static desktop
3.4.2 Video playback
3.4.3 Game
3.4.4 Deepsleep

4. Power consumption optimization strategy
4.1 CPU optimization
4.2 DDR optimization
4.3 Thermal control optimization
4.4 Power optimization

1. Basic concept

1.1 Frequency (clk) and voltage

Generally there are many modules inside SoC, such as ARM, GPU, DDR, I2C, SPI, USB and so on. When each
module is working, the digital logic part requires an appropriate frequency and corresponding voltage. The
higher the module frequency is, the higher the voltage is required. The frequency and voltage are two
important parameters of power consumption.

1.2 Voltage domain(VD) and power domain(PD)

Generally all modules inside SoC have digital logic part and IO part. The digital logic part is mainly
responsible for computing and status control, and IO part is mainly responsible for the transmission of the
interface signal (some modules don't have IO, such as ARM, GPU, etc.). Generally the power supplies of the
digital logic and IO are separated. The power consumption of IO part is relatively fixed, while the power
consumption of digital logic part changes a lot due to the influence of frequency and voltage. In order to
optimize the power consumption, the digital logic part inside the chip is divided into voltage domain and
power domain according to the module.

The voltage domain means the domain where several modules inside the chip share one external
power supply, It can adjust or turn on/off the voltage independently. Generally the modules with
similar running voltage and not large power consumption can be put in the same voltage domain. But
if the power consumption is very large, it is better to use a separate voltage domain, which is
convenient to manage the power consumption and also avoid the peak current exceeding the limit of
external power supply. To ensure that all modules can work normally, need to set the voltage of the

af://n50
af://n51
af://n54

voltage domain to the required voltage of the module with the highest voltage requirement (excluding
the closed module).
One voltage domain may contain many modules and these modules generally don't work at the same
time. With power supply, the modules not working will have leakage. In order to reduce the leakage,
generally we will divide one voltage domain into several areas, and each area can independently turn
on/off the power supply. After some area switches off the power supply, it will be isolated from other
modules and significantly reduce the leakage. This kind of area is called power domain.

Take RK3399 as example, there are 6 VD:

VD_CORE_B: including two big cores Contex-A72, the power consumption is relatively large, so separate
a voltage domain.
VD_CORE_L: including four little cores Contex-A53, the power consumption is relatively large, so
separate a voltage domain.
VD_LOGIC: including some peripherals' controller and system bus, such as USB, EMMC, GMAC, SPI, I2C,
EDP, VOP, AXI, AHB, APB, and so on.
VD_CENTER: including vdpu, vepu, iep, rga and DDR controller.
VD_GPU: including GPU, the power consumption is relatively large, so separate a voltage domain.
VD_PMU: including PMU, SRAM, GPIO, PVTM and other modules relating to suspend and resume
process.

The block diagram is as below:

1.3 DCDC (Direct Current) and LDO (Low dropout regulator)

The external power supply of SoC mainly includes DCDC and LDO:

DCDC generally means switch power, conversion efficiency is high, the efficiency can be up to
~80%~90%, when the current is relatively large, need to use DCDC to improve the power efficiency.

af://n89

The main feature of LDO is input current is equal to output current, so the power efficiency is equal to
output voltage/input voltage. Assuming input 3.8V, output 1.0V, the power efficiency is 1V/3.8V=26.3%,
the power efficiency is low.

Take the power supply solution of RK3126+RK816 as example:

4 BUCK of RK816 separately supply power for ARM, LOG, DDR, IO of RK3126, because the current of
these modules are all relatively large (BUCK is a kind of voltage drop DCDC).
6 LDO of RK816 separately supply power for PLL, PHY and some peripherals of RK3126, because the
current of these modules are relatively small.

The block diagram of the power supply is as below:

1.4 Static power consumption and dynamic power consumption

The static power consumption is the power consumption consumed by the leakage of transistor when
the internal modules of SoC are not working. The static power consumption will increase with the
increase of the temperature and voltage.
The dynamic power consumption is the power consumption consumed by the conversion of internal
circuit when the internal modules of SoC are working. The dynamic power consumption will increase
with the increase of the frequency and voltage.

af://n112

1.5 DVFS(Dynamic Voltage and Frequency Scaling), CPUFREQ and
DEVFREQ

The higher the module working frequency and the voltage are, the higher the power consumption is. So
need dynamically adjust the frequency and voltage to optimize the power consumption. When the system is
idle, reduce the frequency and voltage, when the system is busy, increase the frequency and voltage.

DVFS is the technology of dynamic voltage and frequency scaling, which is the bottom layer technology
implementation of CPUFREQ and DEVFREQ.
CPUFREQ is the software framework of dynamic CPU frequency scaling, including several different
frequency scaling strategies. For more details, please refer to the document 《Rockchip-Developer-
Guide-Linux4.4-CPUFreq-CN》.
DEVFREQ is the software framework of dynamic peripheral(not including CPU) frequency scaling,
including several different frequency scaling strategies. For more details, please refer to 《Rockchip-
Developer-Guide-Linux4.4-Devfreq》.

2. Power consumption measurement

Before optimizing the power consumption, need to measure the voltage and current of each power supply,
analyze the data and then optimize accordingly.

Note: the temperature is an important parameter affecting the power consumption, so need to record the real-
time temperature when measuring the power consumption. The command to acquire the temperature is as below:

2.1 Measurement method

Series connect a resistor R in the circuit to measure the voltage difference U between two sides of the
resistor, then the current I=U/R. Generally use the resistor with 0.01 ohm. Need to adjust the resistance
according to the current.

Take RK3399 EVB board as example, use the voltage measurement method, series connect 0.01 ohm
resistor to the output of VDD_CPU_B, VDD_CPU_L, VCC_1V8 and VCC_DDR, as shown in below picture:

The format of dynamic power consumption:
 /* C is constant, V is voltage, F is frequency*/
 P(d)= C * V^2 * F

cat /sys/class/thermal/thermal_zone0/temp

af://n121
af://n134
af://n140

2.2 Measurement tool

As there are many channels of power required to be measured, use multi-channel voltage/current collector
can effectively improve the testing efficiency. PowerMeterage is the voltage/current collection tool
developed by RockChip and it can measure 20 channels of power consumption data at the same time. The
interface is as below:

The hardware connection of PowerMeterage is as below:

af://n147

3. Power consumption data analysis

3.1 Calculate theoretical power consumption

Use PowerMeterage tool to break down the power consumption of each path, convert DCDC to the battery
with ~80%~90% efficiency, the output current of LDO is equal to the input current, convert DCDC, LDO and
other powers to the battery, and then add them up to estimate the total power consumption. If it is very
different from the power consumption actually measured on the battery, maybe there is leakage. Need to
analyze further.

Take RK3326 EVB board as example, the static desktop power consumption is as below:

Note: the test result of each path should be converted to the power consumption of the battery, so it is more
convenient to compare the actually measured current of the battery with the theoretical current on battery.

af://n156
af://n157

Type
power-
supply

Voltage(V) current(mA)

Theoretical
current on
battery-
3.8V(mA)

Remark

DC/DC VDD_ARM 0.96 10.20 3.23

With 80% efficiency,
conversion formula:
V * I / efficiency /
voltage of the battery

DC/DC VDD_LOG 0.96 89.30 28.20

eg:
Theoretical current
of VDD_LOG on
battery(3.8V)=
0.96 * 89.3 / 0.8 / 3.8
= 28.2

DC/DC VCC_DDR 1.26 38.50 15.91

DC/DC VCC_IO 2.99 4.50 4.43

LDO VCC_1V8 1.81 28.80 28.80
Output current of
LDO is equal to input
current

LDO VDD_1V0 1.00 10.90 10.90

LDO VCC3V0_PMU 3.01 1.20 1.20

battery VBAT 3.81 94.60 92.67
Theoretical value is
similar to actually
measured value

3.2 Compare with EVB data

Break down the power consumption data of each path, compare with the data of EVB in the same scenario,
and check if there is abnormality. For example, the following is the comparison of the static desktop power
consumption between RK3326 EVB board and customer device, it can be seen that customer board's power
consumption of ARM and LOG are abnormal, and need to analyze further.

af://n228

Type power-supply EVB Customer device

 Voltage(V) Current(mA) Voltage(V) Current(mA)

DC/DC VDD_ARM 0.96 10.20 1.10 212.50

DC/DC VDD_LOG 0.96 89.30 1.00 151.30

DC/DC VCC_DDR 1.26 38.50 1.27 40.50

DC/DC VCC_IO 2.99 4.50 2.99 4.80

LDO VCC_1V8 1.81 28.80 1.81 29.80

LDO VDD_1V0 1.00 10.90 1.00 10.20

LDO VCC3V0_PMU 3.01 1.20 3.01 1.40

battery VBAT 3.81 94.60 3.81 191.6

3.3 Data analysis for each path

3.3.1 VDD_CORE/VDD_CPU/VDD_ARM

These three names are the same power, that is, ARM core power. This power consumption can be analyzed
mainly from the following aspects:

Confirm if the frequency voltage table (opp-table) is normal or not, if the actually measured voltage is
consistent with the set voltage or not.

Relative commands are as below:

 /* Acquire the frequency voltage table, target column means the voltage required by some
frequency */
cat /sys/kernel/debug/opp/opp_summary
 device rate(Hz) target(uV) min(uV) max(uV)

...
 cpu0
 408000000 950000 950000 1350000
 600000000 950000 950000 1350000
 816000000 1000000 1000000 1350000
 1008000000 1125000 1125000 1350000
 1200000000 1275000 1275000 1350000
 1248000000 1300000 1300000 1350000
 1296000000 1350000 1350000 1350000

/* Check the frequency scaling strategy currently used by cpufreq, cpu frequency scaling
is enabled with the default interactive strategy */
cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
interactive

af://n302
af://n303

Check cpu loading, analyze if there is abnormal task or interrupt.

/* Set userspace strategy to fix the frequency of cpu, then set different frequencies,
compare the set voltage with the measured voltage */
echo userspace > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
userspace

/* Check the frequency point supported by cpufreq */
cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies
408000 600000 816000 1008000 1200000 1248000 1296000

/* Set the fixed frequency */
echo 408000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

/* Confirm current frequency*/
cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq
408000

/* Confirm current voltage, and compare with measured value, vdd_arm represents the name
of regulator, which is differnt for differnt projects*/
cat /sys/kernel/debug/regulator/vdd_arm/voltage
950000

/* Acquire current voltages of all regulators*/
cat /sys/kernel/debug/regulator/regulator_summary
 regulator use open bypass voltage current min max

...
 vcc3v8_sys 0 12 0 3800mV 0mA 3800mV 3800mV
 deviceless 0mV 0mV
 vdd_logic 0 4 0 950mV 0mA 950mV 1350mV
 dmc 950mV 1350mV
 ff400000.gpu 950mV 1350mV
 bus-apll 950mV 1350mV
 deviceless 0mV 0mV
 vdd_arm 0 2 0 950mV 0mA 950mV 1350mV
 cpu0 950mV 1350mV
 deviceless 0mV 0mV
...

/* Use top command to check the task loading, the output of top with different versions
will have difference, this version of top supports to check the thread and the running
cpu of the thread */
top -m 5 -t
User 51%, System 2%, IOW 0%, IRQ 0%
User 712 + Nice 0 + Sys 33 + Idle 634 + IOW 0 + IRQ 0 + SIRQ 0 = 1379

/* PR column represents currently running cpu of the thread, the sum of all cpu loading
percentage is equal to 100%, so the highest loading percentage of each cpu is
100%/NR_CPU, the highest loading percentage of each CPU of SoC with 4 cores is 25% */
 PID TID PR CPU% S VSS RSS PCY UID Thread Proc

 2631 2631 3 25% R 3104K 552K fg root busybox busybox

3.3.2 VDD_GPU

 2632 2632 2 25% R 3104K 552K fg root busybox busybox
 2633 2633 1 3% R 740K 400K fg root top /data/top
 255 476 0 0% S 15492K 4988K fg system HwBinder:255_1
 /vendor/bin/hw/android.hardware.sensors@1.0-service
 419 478 1 0% S 3770752K 256884K fg system SensorService system_server

/* Use cpustats to observe the frequency change of cpu */
cpustats
Total: User 600 + Nice 0 + Sys 3 + Idle 591 + IOW 0 + IRQ 0 + SIRQ 0 = 1194
 408000kHz 0 +
 600000kHz 0 +
 816000kHz 0 +
 1008000kHz 0 +
 1200000kHz 0 +
 1248000kHz 0 +
 1296000kHz 0 +
 1416000kHz 0 +
 1512000kHz 1200 = 1200 /* within the statistic time, there are 1200 system jiffies in
total, 1512M running for 1200 jiffies */
/* from below, we can see the loading status of each cpu, including user mode, kernel
mode, interrupt and idle time */
cpu0: User 0 + Nice 0 + Sys 1 + Idle 294 + IOW 0 + IRQ 0 + SIRQ 0 = 295
cpu1: User 299 + Nice 0 + Sys 1 + Idle 0 + IOW 0 + IRQ 0 + SIRQ 0 = 300
cpu2: User 1 + Nice 0 + Sys 1 + Idle 296 + IOW 0 + IRQ 0 + SIRQ 0 = 298
cpu3: User 300 + Nice 0 + Sys 1 + Idle 0 + IOW 0 + IRQ 0 + SIRQ 0 = 301

/* check the ratio of running time for each frequency through cpufreq node, time unit:
jiffies */
cat /sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state
408000 718186
600000 548
816000 368
1008000 1578
1200000 1104
1248000 84
1296000 101
1416000 678
1512000 47495

/* check the inturrupt quantity of all peripherals */
cat /proc/interrupts
 CPU0 CPU1 CPU2 CPU3
 1: 0 0 0 0 GICv2 29 Edge arch_timer
 2: 181898 165057 636772 839244 GICv2 30 Edge arch_timer
 5: 180743 39000 28905 65189 GICv2 62 Level rk_timer
 13: 260634 0 0 0 GICv2 39 Level ff180000.i2c
 14: 354805 0 0 0 GICv2 40 Level ff190000.i2c
 15: 0 0 0 0 GICv2 41 Level ff1a0000.i2c
...

af://n318

The power consumption of VDD_GPU mainly confirms if the the frequency voltage table is normal or not, if
the measured voltage is consistent with the set voltage or not, using devfreq node.

Note: some chips' GPU module doesn't have separate VD and it will put GPU in VDD_LOGIC, now need to confirm if
the voltage of VDD_LOGIC is normal or not.

3.3.3 VDD_LOGIC

/* acquire the frequency voltage table */
cat /sys/kernel/debug/opp/opp_summary
 device rate(Hz) target(uV) min(uV) max(uV)

...
 platform-ff400000.gpu
 200000000 950000 950000 950000
 300000000 950000 950000 950000
 400000000 1025000 1025000 1025000
 480000000 1100000 1100000 1100000
 520000000 1150000 1150000 1150000
...

/* check the frequency scaling strategy currently used by gpu devfreq, gpu frequency
scaling is enabled with the default simple_ondemand strategy */
cat /sys/class/devfreq/ff400000.gpu/governor
simple_ondemand
Note: ff400000 of ff400000.gpu is the address of gpu register, so the name will be
different for differnt chips.

/* Set userspace strategy to fix the frequency of gpu, then set different frequencies,
compare the set voltage with measured voltage */
echo userspace > /sys/class/devfreq/ff400000.gpu/governor
cat /sys/class/devfreq/ff400000.gpu/governor
userspace

/* check the frequency points supported by gpu devfreq */
cat /sys/class/devfreq/ff400000.gpu/available_frequencies
520000000 480000000 400000000 300000000 200000000

/* set the fixed frequency */
echo 200000000 > /sys/class/devfreq/ff400000.gpu/userspace/set_freq

/* confirm current frequency */
cat /sys/class/devfreq/ff400000.gpu/cur_freq
200000000

/* confirm current voltage, and compare with measued value */
cat /sys/kernel/debug/regulator/vdd_gpu/voltage
950000

/* check gpu loading */
cat /sys/class/devfreq/ff400000.gpu/load
0@200000000Hz

af://n324

Generally VDD_LOGIC will contain many modules, in order to manage the power consumption conveniently,
it will be divided into many PD internally. The power consumption can be analyzed mainly from the
following aspects:

Confirm the running frequency and switch status of each module.

Confirm the switch status of each PD.

cat /sys/kernel/debug/clk/clk_summary
 clock enable_cnt prepare_cnt rate accuracy phase
--
 xin24m 9 10 24000000 0 0
...
 pll_gpll 1 1 1200000000 0 0
 gpll 9 20 1200000000 0 0
 clk_sdio_div50 1 1 100000000 0 0
 clk_sdio 1 5 100000000 0 0
 sdio_sample 0 1 50000000 0 0
 sdio_drv 0 1 50000000 0 180
 clk_emmc_div50 1 1 300000000 0 0
 clk_emmc 1 5 300000000 0 0
 emmc_sample 0 1 150000000 0 42
 emmc_drv 0 1 150000000 0 180
...

cat /sys/kernel/debug/pm_genpd/pm_genpd_summary <
domain status slaves
 /device runtime status
--
pd_gpu off
 /devices/platform/ff400000.gpu suspended
pd_vi off
 /devices/platform/ff4a8000.iommu suspended
pd_vo on
 /devices/platform/ff460f00.iommu active
 /devices/platform/ff470f00.iommu suspended
 /devices/platform/ff2e0000.video-phy suspended
 /devices/platform/ff450000.dsi active
 /devices/platform/ff460000.vop active
 /devices/platform/ff470000.vop suspended
 /devices/platform/ff480000.rk_rga suspended
pd_vpu off
 /devices/platform/ff440440.iommu suspended
 /devices/platform/ff442800.iommu suspended
 /devices/platform/vpu_combo suspended
pd_mmc_nand on
 /devices/platform/ff380000.dwmmc unsupported
 /devices/platform/ff390000.dwmmc unsupported
 /devices/platform/ff3b0000.nandc active
pd_gmac off
pd_sdcard off

pd_usb on

Generally DDR module is put in VDD_LOGIC, and the power consumption of DDR module is relatively
large, use the same devfreq strategy as GPU to optimize the power consumption, so need to confirm
the frequency voltage table and measured voltage. DDR also has some configurations with low power
consumption, such as pd_idle, sr_idle, odt switch and some other timing configurations. The debugging
process is relatively complex. Need to refer to the detailed DDR document.

3.3.4 VCC_DDR

VCC_DDR supplies power mainly for DDR component and DDR-IO part of SoC. The parameters affecting the
power consumption of VCC_DDR include: DDR frequency, DDR loading, DDR low power consumption
configuration, DDR component type and so on. Under the same condition, the power consumption of DDR
components from different vendors may have big difference.

3.3.5 VCC_IO

VCC_IO supplies power mainly for IO Pad of SoC and some peripherals. The power consumption can be
analyzed from the following aspects:

Check the working status of peripheral module, if there is leakage.
Check if IO pin status of SoC matches with the peripheral or not, for example, IO output is high, but the
connected peripheral pin is low level.

3.4 Common scenario analysis

3.4.1 Static desktop

It is mainly the display module which is working, CPU, GPU, DDR should be reduced to the lowest frequency,
and enter low power consumption mode. Adjust VDD_CPU,VDD_GPU,VDD_LOGIC to the lowest voltage of
opp-table, confirm the status of clk_summary and pm_genpd_summary, confirm the peripheral modules
(WIFI, BT, etc.) are all closed. The static desktop generally is used as the basic power consumption of other
scenarios, so need to firstly optimize its power consumption to the best.

3.4.2 Video playback

 /devices/platform/ff300000.usb active

cat /sys/kernel/debug/opp/opp_summary
 device rate(Hz) target(uV) min(uV) max(uV)

 platform-dmc
 194000000 950000 950000 950000
 328000000 950000 950000 950000
 450000000 950000 950000 950000
 528000000 975000 975000 975000
 666000000 1000000 1000000 1000000
...

/* ddr uses dmc_ondemand frequency scaling strategy by default */
cat /sys/class/devfreq/dmc/governor
dmc_ondemand

Other commands to set the frequency and voltage are the same as GPU devfreq.

af://n342
af://n345
af://n355
af://n356
af://n359

It is mainly the video decoder (VPU/RKVDEC) which is working, GPU generally is closed. Especially confirm if
the running frequency of DDR and voltage of VDD_LOGIC are normal or not.

3.4.3 Game

It is mainly CPU and GPU which are working. Especially analyze the loading of CPU and GPU, frequency
change, the voltages of VDD_CPU and VDD_GPU are normal or not.

3.4.4 Deepsleep

Generally VDD_CPU and VDD_GPU will turn off the power supply, VDD_LOG only reserves the power supply
for some resume module, so need to focus on the power consumption analysis of IO, DDR components and
some peripherals.

4. Power consumption optimization strategy

4.1 CPU optimization

Adjust cpufreq parameter.

Close some cpu, limit the highest frequency of cpu.

/* the default frequency scaling strategy used is interactive, relative parameters are
as follows: */
ls -l /sys/devices/system/cpu/cpu0/cpufreq/interactive
go_hispeed_load /* when the loading is larger than go_hispeed_load and the frequency
is smaller than hispeed_freq, directly jump to hispeed_freq */

hispeed_freq /* when jumping from low frequency to high frequency, need to jump
to hispedd_freq first */
above_hispeed_delay /* when the frequency is larger than hispeed_freq, the time duration
before each frequency increase */
min_sample_time /* after each frequency increase, if it is to reduce the frequency
next time , the time duration before frequency reduce */

target_loads /* the target loading of the frequency scaling */
timer_rate /* the loading sampling time，unit:us */
timer_slack /* the loading sampling time after cpu entering idle */
boost /* when the frequency is smaller than hispeed_freq, keep boost to
hispeed_freq */
boostpulse /* when the frequency is smaller than hispeed_freq, boost to
hispeed_freq, keep a while */
boostpulse_duration /* time duration of boostpulse, unit:us */
io_is_busy /* whether to compute io wait to cpu loading */

We mainly adjust three parameters: hispeed_freq，target_loads，timer_rate:

1. hispeed_freq: select an appropriate transition frequency, to make cpu stable in the
medium frequency, with the best power consumption, too large or too small will cause cpu
jump to high frequency easily and increase the power consumption.
2. target_loads:easier to run with low frequency after this value is increased, both the
power consumption and the performance will be reduced.
3. timer_rate: easier to run with low frequency after this value is increased, both the
power consumption and the performance will be reduced.

af://n362
af://n365
af://n368
af://n369

SoC with ARM Big-Little architecture can bind the tasks with high loading to little cores through CPUSET
since the energy efficiency of the little core is better.

/* Note: SoC with SMP architecture can also bind the tasks to some cpu so that other cpus can enter low
power consumption mode, but maybe it will make cpu easy to run with high frequency, which will increase
the power consumption. */

Limit the cpu bandwidth of the tasks with high loading through CPUCTL (need to enable the macro
CONFIG_CFS_BANDWIDTH).

/* close cpu2，cpu3 */
echo 0 > /sys/devices/system/cpu/cpu2/online
echo 0 > /sys/devices/system/cpu/cpu3/online

/* set the max frequency of cpu0 to 1200MHz */
echo 1200000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq

/* create group of litte core*/
mkdir /dev/cpuset/little

/* set cpu used by group of little core */
echo 0-3 > /dev/cpuset/little/cpus

/* add pid=1111 task into the group of little core */
echo 1111 > /dev/cpuset/little/tasks

/* Android system creates several groups by default, the framework layer puts the tasks
into differenct groups, you can adjust cpus of each group, analyze the power consumption
*/
ls /dev/cpuset
background
foreground
system-background
top-app

/* create the group of bandwidth limitation */
mkdir /dev/cpuctl/mygroup

/* set the cycle of bandwidth limitation as 10ms */
echo 10000 > /dev/cpuctl/mygroup/cpu.cfs_quota_us

/* within each cycle, total running time of the tasks in the group cannot exceed 5ms,
this value can be larger than cfs_quota_us, because it is the total running time of
multiple cpus */
echo 5000 > /dev/cpuctl/mygroup/cpu.cfs_period_us

/* add relative tasks into the group */
echo 1111 > /dev/cpuctl/mygroup/tasks
echo 1112 > /dev/cpuctl/mygroup/tasks

/* cpu.shares means to limit the bandwidth of the task through weight, used for

4.2 DDR optimization

Frequency scaling with scenario: configure different DDR frequencies for different scenarios, such as
4K video, video recording, dual display and so on.

Frequency scaling with loading: monitor the loading, automatically adjust DDR frequency, frequency
scaling with loading may cause the reduction of the performance, you can fix DDR frequency in some
scenario considering the frequency scaling with scenario.

performance optimization, without affecting the power consumption */
/dev/cpuctl/mygroup/cpu.shares

/* scenario definition */
include/dt-bindings/clock/rk_system_status.h
#define SYS_STATUS_NORMAL (1<<0)
#define SYS_STATUS_SUSPEND (1<<1)
#define SYS_STATUS_IDLE (1<<2)
#define SYS_STATUS_REBOOT (1<<3)
#define SYS_STATUS_VIDEO_4K (1<<4)
#define SYS_STATUS_VIDEO_1080P (1<<5)
...

/* configure the frequencies for different scenarios in dts */
arch/arm64/boot/dts/rockchip/px30.dtsi
dmc: dmc {

compatible = "rockchip,px30-dmc";
...
system-status-freq = <

/*system status freq(KHz)*/
SYS_STATUS_NORMAL 528000
SYS_STATUS_REBOOT 450000
SYS_STATUS_SUSPEND 194000
SYS_STATUS_VIDEO_1080P 450000
SYS_STATUS_BOOST 528000
SYS_STATUS_ISP 666000
SYS_STATUS_PERFORMANCE 666000

>;
...

/* acquire the current scenario */
cat /sys/class/devfreq/dmc/system_status
0x401

/* configure the parameter of frequency scaling with loading in dts, need to open dfi
node to monitor DDR utility ratio */
dmc: dmc {

compatible = "rockchip,px30-dmc";
...

/* use dfi to monitor the utility ratio of DDR */
devfreq-events = <&dfi>;

 /*

af://n392

Power Type Input Current Power Consumption

LDO 50mA 165mW

DCDC(with 80% efficiency) 18.9mA 62.4mW

For more detailed configuration and optimization of DDR DEVFREQ, please refer to the document
《Rockchip-Developer-Guide-Linux4.4-Devfreq》.

4.3 Thermal control optimization

When the temperature is increasing to certain degree, the power consumption will increase dramatically,
especially in the case with high voltage.

Improve the heat dissipation of hardware.
Optimize the software thermal control strategy to avoid the big temperature fluctuation.
Avoid the high voltage occurring in the case with high temperature through software limitation.

4.4 Power optimization

In voltage conversion circuit, when the voltage reduction and current are relatively large, it is
recommended to use DCDC to improve the efficiency and reduce the power consumption.

For example:

Input 3.3V, output 1.0V-50mA

 /*
 * the threshold of frequency scaling：
 * when the utility ratio is over 40%, adjust to the highest frequency.
 * when the loading is less than 40% and larger than 40%-20%, maintain current

frequency.

 * when the loading is less than 40%-20%, it will adjust the frequency to a certain
value to make the loading to be around 40%-2%/2.

 */
upthreshold = <40>;
downdifferential = <20>;

/* check the DDR loading of current system */
cat /sys/class/devfreq/dmc/load <
33@528000000Hz

&cpu0_opp_table {
/* when the temperature is over 85 degree, limit the max voltage of cpu to 1.1V */
rockchip,high-temp = <85000>;
rockchip,high-temp-max-volt = <1100000>;

/* or directly limit the max frequency to avoid the high voltage */
rockchip,high-temp-max-freq = <1008000>;

};

af://n407
af://n421

	Power consumption analysis and optimization
	1. Basic concept
	1.1 Frequency (clk) and voltage
	1.2 Voltage domain(VD) and power domain(PD)
	1.3 DCDC (Direct Current) and LDO (Low dropout regulator)
	1.4 Static power consumption and dynamic power consumption
	1.5 DVFS(Dynamic Voltage and Frequency Scaling), CPUFREQ and DEVFREQ

	2. Power consumption measurement
	2.1 Measurement method
	2.2 Measurement tool

	3. Power consumption data analysis
	3.1 Calculate theoretical power consumption
	3.2 Compare with EVB data
	3.3 Data analysis for each path
	3.3.1 VDD_CORE/VDD_CPU/VDD_ARM
	3.3.2 VDD_GPU
	3.3.3 VDD_LOGIC
	3.3.4 VCC_DDR
	3.3.5 VCC_IO

	3.4 Common scenario analysis
	3.4.1 Static desktop
	3.4.2 Video playback
	3.4.3 Game
	3.4.4 Deepsleep

	4. Power consumption optimization strategy
	4.1 CPU optimization
	4.2 DDR optimization
	4.3 Thermal control optimization
	4.4 Power optimization

