Rockchip Secure Boot Application Note

ID: RK-SM-YF-024
Release Version: V2.2.0
Release Date: 2020-03-19

Security Level: oTop-Secret oSecret olnternal mPublic

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. FUZHOU ROCKCHIP ELECTRONICS CO., LTD.
(“ROCKCHIP”)DOES NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR
OTHERWISE, WITH RESPECT TO THE ACCURACY, RELIABILITY,
COMPLETENESS,MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE OR NON-
INFRINGEMENT OF ANY REPRESENTATION, INFORMATION AND CONTENT IN THIS DOCUMENT.
THIS DOCUMENT IS FOR REFERENCE ONLY. THIS DOCUMENT MAY BE UPDATED OR CHANGED
WITHOUT ANY NOTICE AT ANY TIME DUE TO THE UPGRADES OF THE PRODUCT OR ANY
OTHER REASONS.

Trademark Statement

"Rockchip", " O3, "Ffi 5" shall be Rockchip’s registered trademarks and owned by Rockchip. All the other

trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.
All rights reserved. ©2019. Fuzhou Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in

any form in whole or in part without the written approval of Rockchip.
Fuzhou Rockchip Electronics Co., Ltd.
No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590
Customer service Fax: +86-591-83951833

Customer service e-Mail: fae(@rock-chips.com


af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Preface

Terms :

Sector: Sector size is 512 bytes

eFuse: One-Time Programmable Memory IP in SOC

RSA Encryption: Use public key for encryption

RSA Decryption: Use private key for decryption

OTP: One-Time Programmable Memory IP in SOC

MaskRom: BootROM, Boot Read-Only Memory in SOC

loader: Boot Loader/First Loader, generally means RKMiniloader or SPL(uboot)

OBM CODE: Generally means the code compiled or trusted by OEM/OBM

Introduction
This document describes how to implement Rockchip secure boot solution.

Secure boot mechanism is for verifying firmware validity, which aims to prevent invalid firmware upgrade and

booting.

The device which had programmed eFuse will enable secure boot ROM, and could not boot from the un-signed

firmware. So trying to upgrade un-signed firmware or unmatched key signed firmware will fail.

NOTE: The valid signed firmware can boot smoothly on fake copies of device circuit board or same CPU

platform hardware. Secure boot will verify the validity of software, but not hardware.

This document applies to RK3126, RK3128, RK3228, RK3229, RK3288, RK3368, RK3399, RK3228H,
RK3328, RK3326, RK3308 and PX30.

Features of secure boot:

e Support secure boot ROM

e Support SHA256

e Support RSA2048

¢ Support eFuse or OTP hash to verify public key

The relative tool revision:

e Efuse tool V1.35 or the latest revision
e SecureBootTool 1.79 or the latest revision
e RKBatchTool 1.8 or the latest revision(deprecated, Use FactoryTool instead)

e FactoryTool 1.39 or the latest revision

History


af://n20

Revision

V1.0.0

VI.1.0

V1.2.0

V1.3.0

V1.4.0

V1.5.0

V1.6.0

VI1.7.0

V1.8.0

V1.9.0

V2.0.0

V2.1.0

V2.2.0

Date

2014-11-05

2015-12-21

2016-02-02

2016-09-29

2016-11-15

2016-11-16

2017-02-15

2017-05-19

2017-10-30

2018-06-05

2018-11-09

2019-10-29

2020-03-19

Description

Original document

Update secure boot tool

Update secure boot tool

Re-edit

Add detailed description of workflow

1. Add terms and definitions.2. Add eFuse layout.
Add RK3328 and RK3228H.

Add sequence chart and note

Refactor the format and add hardware info
Add OTP program public key hash flow

Add RK3336. PX30 and RK3308 OTP layout
Fix some error

Fix some error

Author

ZYF

YBC

YHC

ZYF

Joshua

Joshua

ZYF

Z7])

Cw

CF

CF

ZYF/CF

ZYF



Contents

Rockehip Secure Boot Application Note
Preface
1 Architecture
1.1 Secure Boot Process
1.2 Secure Boot Sequence
1.3 MaskRom Boot to the First Loader (RKminiL.oader/U-Boot)
1.4 First Loader boot to u-boot(Secondary Boot Loader,option)
1.5 U-Boot Boot to Boot Image with Linux kernel
1.6 U-Boot Boot to Recovery
2 eFuse Layout
3 Overall Operation Flow
4 Make Update.img
4.1 Generate Images
4.2 Packet Update.img
5 Firmware Sign Flow
5.1 Generating RSA key
5.2 Save RSA key
5.3 Loading RSA key
5.4 Configuration
5.5 Sign Firmware
6 Programming eFuse
6.1 Hardware Conditions
6.1.1 eFuse Programming
6.1.2 OTP Programming
6.2 Tool Ul
6.3 Load the Signed Firmware
6.4 Click 'run' Button to Start
6.5 Programming eFuse
6.6 Programming OTP
7 Firmware Upgrade
7.1 Firmware Upgrade
8 Verification
8.1 Check Secure Flag
8.2 Secure Boot Test
9 Secure Debug
9.1 Introduction

9.2 Secure Debug Process



1 Architecture

1.1 Secure Boot Process

Data process in Data generate
Boalrom Dala storage OBM Cade g

SHAZEE

0BM Code

r
OBM
Code
Y

SHA256 DS of Digital
e BB
OBM Code
HASH of RSAZ048
OBM Code |  Encyption Digital
signature

..
=]

SHA256 [+—— Public Key =

MATCH?

HASH of r
47/ T /4— SHAZSE 1—{ Public Key }

Figure 1-1 Secure boot process

1.2 Secure Boot Sequence

Verfies&loads&Runs
¥
» Secure OS(OP-TEE)
Verifie&Loads&Runs
BootLoader(13tep) Run

Varfiabloads

BootLoader| 2stap)

=== -
| . !
| Linux Kemel |
Varfisbloads&Ru | |
‘.eoovery 5 |

Initrd{boot.img)

Timg
Yas
| VarifisfLoads&Runs

Linuxinitprocess & | ) pagsRRung | isystem

init.re {from initrd )

Android framessark.
code |—LosdsfRuns leystemidata

Unsigned

Android fully active:

\J

Figure 1-2 Secure boot sequence

1.3 MaskRom Boot to the First Loader (RKminiL.oader/U-Boot)


af://n135
af://n136
af://n139
af://n142

HASH in OTP

MASKROM

s

Get Public Key

key

HASH(SHA256) of public

Get raw binary of first
loader

HASH(SHAZ256) of raw
binary

MATCH?

Boot failed

Get digital Signature

.

RSA2048 encryption |4

4

(Loadingﬁrstlcader) Y .;{ Boot failed )

Figure 1-3-1 MaskRom to loader sequence

First loader layout in user partition of flash

Table 1-1 First loader data layout

0-63 sector

first loader(8128 sector)(5 copys)

0-2047
2048-4095

4096 -

Boot loader copy(4) partition
0-2047
2048-4095

4096 -

64 sector reverse

Boot loader partition

loader header

public key and digital signature

raw binary

loader header
public key and digital signature

raw binary

The structure of public key and digital signature layout at address 2048 to 4095:

typedef struct tagBOOT HEADER

{

uint32 version;

1

2

3 uint32 tag;
4

5 uint32 flags;
6

uint32 size;



7 uint32 reservedl[3];

8 uintl6 HashBits;

9 uintl6 RSABits; /* length in bits of modulus */
10 uint32 RSA N[64]; /* RSA public key*/
11 uint32 RSA E[64];

12 uint32 RSA C[64];
13 uint32 HashDatal[ (8+1)*2];
14 uint32 signature[64];

15 }BOOT HEADER, *PBOOT HEADER;

Public key: uint32 RSA N[64], RSA E[64], RSA C[64];
Digital signature: uint32 signature[64]
Step1: Get public key from first loader partition.

Step2: Calculate the hash(SHA256) of public key and compare it with the the hash stored in OTP.If mathed,load

the first loader successfully, otherwise booting failed.

Step3: Calculate the hash(SHA256) of raw binary and compare it with RSA2048 encryption(have been

obtainde in step1) of digital signature. If matched, load first loader successfully, otherwise booting failed.

1.4 First Loader boot to u-boot(Secondary Boot Loader,option)

Get Public Key
from first loader

HASH(5HAZ56) of

public kev
HASH in OTP Boot failed
et
Get raw binary of Get digital Signature

uboot

b

RSAZ2048 encryption

HASH (SHAZ56) of raw
binary

F

k J

(:Loadiﬂg ubuot:) NG Boot failed

Figure 1-4-1 boot to -uboot flow



af://n185

UBoot

0-2047 header, digital signature

2048- Raw binary

uboot

4MB, 4copys
( pys) UBoot copy(3)

0-2047  |header, digatal signature

2048- Raw binary

Table 1-4 u-boot layout in flash

The structure of header with digital digital signature layout at address 0 to 2047:

1 typedef struct tag second loader hdr

2| {

3 unsigned char magic[LOADER MAGIC SIZE];
/4 unsigned int version;

unsigned int reservedO;

unsigned int loader load addr; /* load to DDR address */
unsigned int loader load size; /* size in bytes */

8 unsigned int crc32; /% cee3d2 */

9 unsigned int hash len; /* 20 or 32 , 0 is no hash */

10 unsigned char hash[LOADER HASH SIZE]; /* sha256 */

unsigned int js_hash; /* js hsah */
12 unsigned char reserved[1024-32-32-4];
13 unsigned int signTag; /* 0x4E474953, "NGIS" */
14 unsigned int signlen; /5 256 %/
5 unsigned char rsaHash[256]; /* digital signature */

16 unsigned char reserved2[2048-1024-256-8];
17  }second loader hdr;

Digital signature: unsigned char rsaHash[256];

1 Step 1: Get public key from first loader partition

1 Step 2: Calculate the hash (sha256) of public key and compare it with hash in OTP, if matched go to next step,

otherwise booting failed.

1 Step 3: Calculate the hash(SHA256) of raw binary and compare it with RSA2048 encryption (have been
obtained in step 1) of digital signature, if matched, loading successfully and deliver the public key to U-Boot,

otherwise booting failed.

1.5 U-Boot Boot to Boot Image with Linux kernel


af://n196

Get Public Key passing

from first loader

Boot failed )

Get digital Signature

v

RSA2048 encryption |4

HASH({SHA256) of
public key
NO
HASH in OTP < MATCHZ
YES
Get raw binary of boot
image
HASH(SHAZ56) of raw
binary
MATCH? <
YES
Goading boot imaga
Figure 1-5 U-Boot to boot sequence
Table 1-2 Boot data layout
boot.img 0-2047
2048-4095 digital signature
4096- kernel,ramdisk,dtb...

The structure of layout 0-2047(header):

N =

w

16

#define BOOT MAGIC SIZE 8

#define BOOT NAME SIZE 16

#define BOOT ARGS SIZE 512

typedef struct tag boot img hdr

{
unsigned char magic[BOOT MAGIC SIZE]; /*
unsigned int kernel size; /%
unsigned int kernel addr; /=
unsigned int ramdisk size; /*
unsigned int ramdisk addr; /*
unsigned int second_size; /*
unsigned int second addr; /*
unsigned int tags_addr; /*

*/
unsigned int page size; /=
unsigned int unused[2]; /*

*/

unsigned

char name [BOOT NAME SIZE]; /*

Boot failed )

header

"ANDROID!" */
size in bytes */
physical load addr */
size in bytes */
physical load addr */
size in bytes */
physical load addr */
physical addr for kernel tags
flash page size we assume */
future expansion: should be 0

asciiz product name */



17 unsigned

18 unsigned
etc */

19 unsigned

20 unsigned

21 unsigned

22 unsigned

char cmdline[BOOT ARGS SIZE];
int 1id[8]; /* timestamp / checksum / shal /

char reserved[0x400-0x260];

int signTag; /* 0x4E474953 */
int signlen; /* 128 */
char rsaHash([128];

23 }boot img hdr;

Digital signature: unsigned char rsaHash[128];

1 Step 1: U-Boot get public key obtained from first loader.

1 Step 2: Calculate the hash (sha256) of public key and compare it with hash in OTP, if matched go to next step,

otherwise booting failed.

1 Step 3: Hash(SHA256) of raw binary and compare it with RSA2048 encryption (using public key get in step

1) of digital signature, if matched, boot to linux kernel, otherwise booting failed.

1.6 U-Boot Boot to Recovery

The same as boot to boot image, detail please refer to chapter 1.4.


af://n227

2 eFuse Layout

RK3368, RK3288, RK3229 and RK3228 used 1024 bits eFuse for secure boot, data layout:

Table 2-1 eFuse data layout

32-bit Word Addressing Description

0x00 Security flagBits [7:0] security enable flag Bits [31:8] reserved
0x01-0x3 Reserved

0x04-0x07 Reserved

0x8-0xF RSA public key hash
0x10-0x17 Reserved

0x18 Reserved

0x19-0x1A Reserved
0x1B-0x1D Reserved

0x1E Reserved

Ox1F eFuse write lock bits

RK3228H and RK3328 used 7680 bits OTP for secure boot, data layout:

Table 2-2 OTP data layout

32-bit Word
. Description
Addressing
0-63 Public Key (N)
64-127 Public Key (E)
128 Security flagBits [7:0] Oxff: security enable flagBits [15:8] RSA_E size (word
uint)Bits [31:16] Reserved
129 Trusted Firmware revocation counter (ID #0)
130-131 Non-trusted Firmware revocation counter (ID #1)
132-239 Reserved

RK3326. PX30 and RK3308 used 4096 bits OTP for secure boot, data layout:

Table 2-3 OTP data layout2


af://n231

32-bit Word Addressing Description

0 Secure boot enable flag

1-3 Reserved

4-11 RSA Public key hash(using SHA256)

12-19 Device root key

20-23 FW encryption key

24-25 Trusted Firmware revocation counter (ID #0)
26-31 Non-trusted Firmware revocation counter (ID #1)

32-97 Reserved for OEM



3 Overall Operation Flow

Enable secure boot flow:

1. Package update.img

2. Sign Firmware(update.img)

3. Program EFUSE or OTP

4. Upgrade Firmware(update.img)

5. Check secure boot enable

boot.img
misc.img
FECOvERy . img
system.immg
HH¥bootioader bin

package-file

update.img

privatekey bin

Make update.img

Firmaare Sign

ublickey. bin
4] Y _

update_signed.img

Figure 3-1 Secure boot operation process

Frogramming EF USE

Firmeare Upgrade

i

Ensure that secure boot has been
enabled



af://n325

4 Make Update.img

4.1 Generate Images

After build Android,use the following script to generate images:

./mkimage.sh ota

projectsifbogon:~/release/RK3288/mid/5.186 . /mkimage.sh ota
TARGET PRODUCT=rk3288

TARGET HARDWARE=rk30board

system—filesysys»tem is ext4

make ota images...

efeate boot.img with kernel... done,
feate recovery.img with kernel... done.
create misc.img.... done.

create system.img... done.

Figure 4-1 Script to generate images

4.2 Packet Update.img

Refer to RKTools/windows/AndroidTool/rockdev/package-file. This file controls which files will be packaged.

Take RK3288, for example. Change bootloader path, commentaries resource and kernel lines, set backup to
RESERVED.

quhy{dd|

# NAME Relative path

1

#HWDEF HWDEF

package-file package-file

bogtloader Image/RK3288UbootLoadesr.bin

DArAmMSTEr rk3JEE-3.10-uboot . pATAMETEr . TXT

$#uboot Image/uboot .- img

misc ;macef:r.lsc‘lmg

#resource Image/resource.img
_T.ke:nel Image/kernel.img

boot Image/boot.img

recovery Image/recovery.img

system Image/system.img

2 EE Apsckup XA FEE S (update.img)

¢ SELF BRXRTE FTLHASTHE (updace.img) S5

LAF IR, FAIASELF LIRS, BELAEEEFHFILRE
LA e, FESsELFEHAIAE.

I backup RESERVED |

update-script update-script

recover-script recover-script

Figure 4-2 Package-file to control the packaging

Copy RKTools/windows folders to windows system, then run AndroidTool/rockdev/mkupdate.bat to generate

the update.img.


af://n342
af://n343
af://n348

‘;‘;9 + AndroidTool b rockdev »

FHF  REE) =8V

backupimage
Image

5| AFPTool.exe
package-file
recover-seript
rk3288-3.10-uboot.parameter.bd
RE3288UbootLoader_V2.19.06.bin

B | REImageMaker.exe

update-script
L Rp 1!

i [

Figure 4-3 Script-to-generate-images

BN Android Firmware Package Tool v1.62




S Firmware Sign Flow

This instruction is for Windows tools, while Linux has its own.

5.1 Generating RSA key

w SecureBootTool v1.84 &3
Basiec Function Advanced Function
chip: 3288 [ Generate Key Pairs ] Sign Loader
Sign File
Encrpyt: [ Load Key J
. e — l'.:
© «f{ PROMPT | 22 |
INFO: St as -

INFO:Staz [0] Generate Key pairs succeed,would you want to save them?
INFO: Gen —
INFO: Gen

=0 BN

Figure 5-1 SecureBootTool generates RSA key

5.2 Save RSA key

This key will be used for signed firmware and for OTA, please back up to a secure storage.

NOTE: The keypair is VERY important! Make sure to save it securely. Once you lost it or leak it, your product
will be exposed in high risk, also the old device will be unable to be updated anymore.It should be maintained

through the whole product life cycle



af://n357
af://n359
af://n362

%8 SecureBootTool v1.84

Basic Function Advanced Function
Generate Key Fairs Sign Loader
chip: |3288 | [ _
Si1gn File
Encrpyt: .
Check 51 Fil
@ efuse eck Sizn File
|48 SecureBootTool_vl. 54
INFD; Start to . bin
INFO:Start to i . config
INFO:Generatin ) Log

INFOQ: Generate x b ) Tenp

Figure 5-2 SecureBootTool saves RSA key

5.3 Loading RSA key
B8 secureBootTool v1.84
mh+ﬂmrmt£:}bpmjed v sdk2 <4 |[ 2= sz P
Ry s =~ [l @
= Em -~ 2z . BHEL =R Felh
L RunsreE [ privateKey.bin 2017/10/30 14:25  BIN 3% 2KB
| | publicKey.bin 2017/10/20 14:25  BIN it 1 KB
| EREME
[~ Ed
= EE E
8 o
& B
L =
€ Fi G
BN | Key File(*.bin) -
| /o || = |

Figure 5-3 SecureBootTool loads RSA key

5.4 Configuration

Cl‘lip.' 3288 -

Choose SOC platform


af://n367
af://n370

Encrpyt

@ sfusza soft

Option ‘efuse’ means using eFuse to store the hash of the RSA public key, and will enable secure boot
ROM(recommended).

Option ‘soft’ is for some special applications, will not enable secure boot ROM, used RSA1024 and SHA160.
zemerate Key Pairs

Every product model will generate RSA KEY only once, please backup in case that you cannot upgrade

firmware or OTA again.

Load Key

Loading backup RSA key (support ‘.pem’ file format generated by openssl)
Sign Firmware

Sign firmware

5.5 Sign Firmware

Make sure the ‘boot.img” and the ‘recovery.img’ are included in the kernel image.

Refer to the pack command:

with kernel...

with kernel...

Figure 5-4 Images’pack command

Open firmware image:


af://n382

=t e e =0 b G
T AR B sdk2 2017/11/1 14:22  TigsE
! SecureBootTool_v1.83_foruser-1 2017/11/1 17:34  Srigsk
o ) SecureBootTool v1.84 2017/11/1 17:40  3rigsk
| SREME |4 updat_KEVS_1.img 2017/10/30 15:45  sedtusfgeris 439,545 KB
€] updat_KEYS_1_then_keyZimg 2017/10/30 15:47  Feimeicr{d 439,545 KB
H w2 |€] updat KEVS_1_then_key? then keyS.i.. 2017/10/30 15:52 ¥Smsors 439,545 KB
s || update - sourceimg 2017/10/27 10:42  Feilmaigorid 439,529 KB
= | update.mg 2017/1131031 %SRBI 439,545 KB|
< =5 || update_2.img 2017/10/30 14:52  FeEhigorit 439,545 KB
|| update_6.img 2017/10/30 15:23  Feimacrid 439,545 KB
1N €] update_3288_6.0.img 2017/10/31 16:19  FeEm@oris 520,929 KB
|€¥] update_3288_6.0_source.img 2017/10/31 15:59  FEEriorid 520913 KB
€ s P —— TR—
KHEN): updateimg ~ [image File(img) -

Figure 5-5 SecureBootTool selects firmware

Signed firmware:

Basic Function

chip: [32'35

7] | Generate Key Pairs |

Encrpyt:

@) efuse soft

INFO:Start to sign filel(b
INFO:Sign file succeed E1
INFO:Start to sign filelr
INFO:Sign file succeed E1
INFO:Start to pack androi

INFO:pack android firmwar
INFO Start to pack umion -

W

Advanced Function

o Sign firmware success.
(=]

[
[

[ Check Sign File |

)

Sign Loader J

Sign File ]

INFO:pack union firmware OK
INFO:Start to sign check key.
INFO:Sign check key OK

INFO:Sign firmware success.

Figure 5-6 Secure Boot Tool-signed firmware



6 Programming eFuse

6.1 Hardware Conditions

For Rockchip AP series, there are two ways to program user secure data. One is "eFuse programming", the other

is "OTP programming"(only few chips support). Following is the introduction.
6.1.1 eFuse Programming

RK3126, RK3128, RK3228, RK3229, RK3288, RK3368 and RK3399 support eFuse programming, following is

the general requirements:

A. If products do not need eFuse data programming, we advise to connect eFuse Power Pin directly to GND.
Avoiding eFuse data change caused by misoperation. (RK3126/RK3126C eFuse Power Pin is reused with
SARADC function, so that it would not to be grounded.)

B. If products need eFuse programming, then connect a pull down resistance to GND on eFuse Power Pin, to
make sure that eFuse power pin doesn't fluctuate in normal work condition. also to avoid eFuse data change
caused by misoperation. This pull-down resistance value, please refer to each chip platform's reference

schematics, generally it's at a range of 47Q-10KQ.
C. There are two types of power supply for eFuse programming:
a) Onboard power supply mode

e Advantage: PCBA socket test board is not needed, you can program eFuse data first, and then upgrade the
firmware. When system works in normal condition, the firmware must make sure that eFuse power is not
on,keep OV to prevent misoperation.

¢ Disadvantange: Power supply circuit must placement on the board. The material cost is increased, and you
need to make sure the firmware is no misoperation at any time.

e Apply to: This power supply mode applies to customers who don't want to add PCBA testing process. For
example some BOX products, their interfaces and assembling are both simple, not need socket board to use
on the PCBA test.

b) Power supply by PCBA test board(recommended)

¢ Advantage: Only test points needed. It is no power supply circuit on board so users can't crack through
software too.

¢ Disadvantage: Increase PCBA test process, the test cost is higher.

1 Apply to: Products like tablets, their assembling is complicated. If PCBA is abnormal, it 's more complicated to
rework and replace, so these kinds of products usually have PCBA testing process, Programming eFuse on this

process is reasonable.
D. Electronic circuit introduction:

Each chip platform’s eFuse power supply voltage is different(such as 1.5/1.8/2.5V), power supply pin number

and current requirement is also different.

we recommend that power supply capacity should be 50mA above, for detailed voltage and pull-down resistance

value, you can refer to schematic diagram. Summarized advices are below:

Table 6-1 Hardware parameters


af://n395
af://n396
af://n398

. i VQPS Pull-down
Chip Part Programming eFusePower
eFusePower Current Resistance . Remark
Number Mode Pin Number

Requirement Value

Power by Reused
RK3126/RK3126C 2.5V PCBA test >50mA None PIN68 with
board ADC

Onboard or
RK3128 2.5V powered by >50mA <=10K R10

external

Onboard or
RK3168/RK3188 1.5V powered by >50mA <=510R Y10

external

Onboard or
RK3228/RK3229 1.6V powered by >50mA <=100R R10

external

Onboard or
RK3288 1.5V powered by >50mA <=510R P19

external

Onboard or
RK3368 1.5V powered by >50mA <=47R Y10

external

Onboard or
RK3399 1.8V powered by >50mA <=1K AD23

external

Recommended power supply mode is shown as below diagram.

a) PartA: eFuse power supply circuit, please choose suitable LDO part number according to the voltage

requirement above, this part circuit can be placed on mainboard, and also can be placed on the PCBA test board.

b) PartB: eFuse power pin with pull down resistance R4(47R-10K), keep the voltage low level to avoid
misoperation. If power supply circuit is placed on the PCBA test board, the SOC mainboard needs to add

responding testing points, to facilitate fixture pin touch.

Attention:

a) RK3126C's eFuse power is reused with ADC function, so it can't connect pull-down resistance.
b) RK3228/RK3229's eFuse power supply is suggest to be adjusted to 1.55-1.6V, to be more stabled.

¢) If the device uses onboard power supply mode, please make sure eFuse PWREN, which is in the following
diagram be distributed an independent GPIO to control the LDO. It must make sure there is no power output on
VCC_eFuse PIN in normal work condition. Details refer to reference schematic that RK released, if there is no

GPIO distributed, contact us or use external power supply mode.

| PartB !

 ; PartA: Power Supply Circut | | Pull down RES and test points
| VCC_I0 VCC_EFUSE | i

| : i c.g | (SOC Side)

] 8 1

| ¥oO )0 ! N P T 4 i voC_EFusE

' . 2 m 3 |_ = ane o1 1 y TP1
| - 0 3 . =l 3

| S m 49 B er 1 L | bl |

| L ~| RO4DZ RT9163 708 el N R4

| 5 80T_21_5 = o3 CoMz | ATR

| | RD4G2 L —— P 1 P

1 R2 a o G2 ! A&z

| EFUSE PWREN AT 210K 2w { =T L ™2
| ROGDZ  hes0T_23 - -

|




Figure 6-1 eFuse circuit

6.1.2 OTP Programming

RK3328 and RK3228H support OTP programming mode, this mode is no need external power supply circuit,
OTP_VCCI8(PIN16) is always powered by VCC 18. you only need to run the special time sequence for OTP

programming, not need the additional changes aboout hardware.

SARADC_AVDD_1v8 e vCC_18
_____________ o
OTP/eFUSE oTP vecis |18 910

EFUSE_VP |12 L
= ¥ ::%\inz
RK3328 ¥ 2

BGA395_14R00X14R00X1R24

Figure 6-2 OTP circuit

6.2 Tool Ul

’-.,_'H? Firmware n F H Luwut] g Exit

Firmwars Firmware Ver:
Loadar Var:
Chip:

) Fail Dewice List Device Type =) Upgrade Prormet o Success [

Wizard:

I.Fizst use, Tag USH port plug device in, secord ID showing an the tool. Tag all. Success: o
D dfrar pluging Amdas in, acemact ansthar uned]l devics is dedvg upgrads.
Fail
A, Ll 4o e, plog devies Se:lad S ead,ds ook plig Sewvics 58 ar sk =
4. Afrmr finishing upgrads, gresn to show success, cs 4 ta show failurs. T o

E. Te zhow zucceazzful davice on tha right of grid and failad davice on the left of grid.

Figure 6-3 eFuse tool Ul

6.3 Load the Signed Firmware


af://n496
af://n500
af://n503

.‘,q? Fir'rmlo Ran MLm;uuqe| 9 Exit

Ficmwaes | I vindroidTool_Relsass_vZ. 3431 28box\ rockdeyuspdate. img Firmware Ver: 4.4.04
Loader Ver:Z2.31

Chip; REJ124

m Fail o~ Dravice Lint Device Typs il Upgrade Prompt

Wizard:

l.First wse, Tag USH port: plug device in. record ID showing on the tool. Tag all.

2. After pluging dswvics in. cormesct another until dewvics iz doing upgrade.

3.1lmd iz gresn, plug device in:lsd ir red. do not plug device in or out.

4. After finizhing upgrade, gresn to xhow succeszsz, ced to zhow failure.

E.Te shew succeszazful device on the right of grid and failed device on the left of geid

Success:

Fail:

Total:

0
0
0

Figure 6-4 Load signed firmware

6.4 Click 'run' Button to Start

Flemware | SEL

| Firmware Ver:d.d4.04
Losdar Ver:2.31

Chip: RE3124

L] Fail | = Drevice List Device Typs mw Upgrade Prampt

= 52 RootHub20
/88 Port[1] Hub R
== Poni]
- Poril2]
= Porni3]
& Porif4)
=2 Port[3]
“= Porie]
% Portl7]
| = PonEl
| Part2]
& Part[3]

| = Parn)

|;_p m8 Pert]3] Huls 2.3

Wizmrd:

L.First use, Tag USHE port plug device in, record ID showing on the tool. Tag all.

2. After pluging device in. connect ancther until device iz doing upgrade.

2 led is gresn plug dsvios incled is red, do not plug devigs in or out.

d.afrer finishing upgrade, green to show success, red to zhow failure.

5. To show successful device on the right of grid and failed device on the left of grid,

= My Computer -~

-2 Penfi] -

Success:

Fail

Total:

BUCGEES B

0
0
0

Figure 6-5 Programming the chip

6.5 Programming eFuse

Connect the device to the PC by USB cable; the tool will program the hash of RSA public key to eFuse

automatically.

Programming eFuse needs an external power supply, the detail information please refer to SOC's DATASHEET.

Notice:RK3228H,RK3328,RK3336,RK3308 and PX30 don’t need step 6.2 to 6.4. Programming will be done by

upgrading firmware which has been signed.

6.6 Programming OTP



af://n506
af://n509
af://n513

RK3228H,RK3328,RK3326,RK3308 and PX30 support OTP programming. Public key hash need program to
OTP. Programming OTP performs are :

1. First, follow the above steps to burn signed firmware. If the machine can start normally, the signature
process is correct. Then OTP can be programed.

2. The signature tool uses version of SecureBootTool V1.9 or more. Open the config.ini file in the tools
directory. Find "sign_flag=", set"sign flag=0x20"(bit 5 set 1) which enable write OTP in RKMiniLoader.

Save config.ini file. Reopen SecureBootTool.exe to sign firmware or RKMiniLoader.

§ » AHEEEE (D0) » work » SecureBootTool v1.9

Fat

=t EdHEE =il Fh

bin 2016/11/7 15:26 e

Log 2018/5/11 10:17 M=
| config.ini 2018/5/14 18:01 IS 2 KB
] liberypto-1_1.dl 2017/5/25 21:20 ~WARETE 2,042 KB
] fibssl-1_1.dll 2017/5/25 21:20  RIFAREHE 365 KB
] msvert20.dl 2017/5/25 2120 ~ FARESE 949 KB
| PrivateKey.pem 2018/4/2 10:46 PEM 321% 2 KB
| ] Publickey.pem 2018/4/2 10:46 PEM =i 1KE
SecureBootTool.exe 2018/5/11 10114 RIFEER 1,130 KB

Figure 6-6-1 SecureBootTool

& config 0=4
| P R|H|(E) B0 =&V #EEH)
[System]

support_chip=3308 3326|3300 |3228h | 3220|3368 | 3228 | 3288 [ 3128 | 3036
new_crypto=3308 | 3326

#using software to check signature, using shalf0 ,belong to “soft_sign”
soft_sign=3128|3036

#using hardware to check signature, using big shaZ56, belons to “hard sis
hard_sign big_hash=3228h|3368|3228 3288

#using hardware to check signature, using little shaZ5R, belong to “hard :
hard _=sign 1itte _hash=3399

#using hardware to check signature,using pss padding , at the bheginning
hard_sign pss=3308|3326(3229

sign flag=0xZ0
gign soft version=
=ign nonce=

Figure 6-6-2 config.ini

3. Use re-signed firmware or RKMiniLoader burnning. After burnning, restart the machine. The
RKMiniLoader will be responsible for generating hash of public key and writing it to OTP during startup

and enable secure boot.



[ RKLoader 1

v

YES
Go to  secure

boot flow

Secure boot enable?

Get secure header from

flash
v

Get public key from

secure header

v

Signature
encryption (RSA2048)

. MO
Booting system HASH (5HA256) of
secure header

YES ¢

Booti st
OOHNg system Enable OTP write?

HASH(SHA256) of public
key

v

Program hash to OTP and

enable secure boot

Figure 6-6-3 OTP program flow

4. If OTP program success, serial port print “otp write key success!!!”. If OTP program fail, serial port

print"otp write error: !!!".



7 Firmware Upgrade

7.1 Firmware Upgrade

Open the signed firmware and connect the device which has programmed eFuse to the PC by USB cable:

Exit |

Clneno | chip:RE3326

1] Fail Device List Device Type 1] Upgrade Prompt
=B My Computer
=22 RootHub20
% Port[1]
% Port[2]
% Port[3]
& Port[d]
% Port[5]
% Port[8]
% Port[7]
& Port[8]
-8 port[o] Hub ]
+& Port[1]
@ Port[2)
- mm Port[3] Hub 29
2 Port]4]
« Port[10]
% Port[11]
% Port[12]

Wizard:

1.First use, Tag USE port:plug device in, record ID showing on the tool. Tag all.

2. After pluging device in, connect ancther until device is doing upgrade.

3.1ed is green,plug device in;led iz red, do not plug device in or out.

4. After finishing upgrads, green to show success, red to show failure.

5.To zhow succeszsful device on the right of grid and failed device on the left of grid.

Figure 7-1 Upgrade tool 1

Firmware Ver:9.0.276
Loader Ver:1.07

L Success

Success: 00000
Fail: 00000
Total: 00000

Select ‘Upgrade’ option and Click "Run" button to start firmware upgrade and wait it to be completed:


af://n534
af://n535

’L::- '_-_-:|® Stap ‘ Upgrade Restore ‘ Demc |. Languag

Firaware Ver:9.0.276
Loader Ver:1.07
Chip:RK3326

D | Fail ~ Device List Device Type [+ Upgrade Prompt (1} | Success
. =} \i My Computer )
= me RootHub20
& Port[1]
& Port[2]
+& Port[3]
+Z Port[4]
& Port[5]
& Port[6]
& Port[7]
& Port[8]
=58 Port[9] Hub 9
+3 Port{l]
3 Port[2]
-5 Port(3) Hub 29
% Port[d]
=% Port10]
& Port[11)]
& Port12) o

Wizard:

1.Firzst use, Tag USB port:plug device im, record ID showing om the tool. Tag all. Success: 00001
2. After pluging device in, connect another until device is doing upgrade.
. : . . Fail: 00000
3.1ed is green,plug device in:led is red, do net plug device in or out.

4. After finishing upgrade, green to show success.red to show failure. Total: 00001

5. To show successful device on the right of grid and failed dewvice on the left of grid.

Figure 7-2 Upgrade tool 2



8 Verification

8.1 Check Secure Flag

Use serial port tools (e.g. SecureCRT) to get the log of system boot. These words show that the security boot is

on:

Secure Boot Mode: 0x1 or SecureMode = 0x1

FRr VOAMy UEAGULL TAYALLAISIN

GetParam

108 check pArameCer SUCCESS
Unknow param: MACHINE MODEL:rk328a!
Unknow pALam: I{ﬁCHIN’E_TD: 007!

111 Upkneow param: MANUFACTURER:RK3288!

] Unknow pazam: PWR_HLD: 0,0,A,0,1!
power key: bank-0 pin-5

114 can't find dgs node for ricohél9

Pmigiact8i4s

116 fg:cwz
117 Boot Mode: Oxl
11 tEn = 1, SecursBootlock = 1

120 #Boot yer: 2015-02-06%#2.19
empty serial no.

122 checkEey
whua = 0

Figure 8-1 Log of system boot

8.2 Secure Boot Test

The device which had programmed eFuse will enable secure boot rom, and could not boot from the un-signed

firmware.
So try to upgrade un-signed firmware or unmatched key signed firmware will fail;
And upgrade matched signed firmware will boot success.

SOC RK3128 and RK3126 will fail at “wait for loader”:


af://n544
af://n545
af://n550

Firmware Ver:b.0.00

Q Bz @ Stop
Loader Wer:2.30

Inena ChipsRE32

[In] Fail Drevice List Drewice Type ID Upgrade Prompt [[n] Success -
' | | = B My Computer .
-2 RootHub2D
--=r Porif1)
- Porif2]
--#2 Port{3)]
== Ponjd] L
b Makom 5 Teabwierd |
=& Portl6)
—#2r Port{7]
=% PortiB]
=g Port{d]
iy Ponf10)
-+ Portf11]
=2 Port{12]
=% Port{13]
=iy Ponfld)
-~ Prari[15)
-+ Port{16] .

Wizard:

1.First uze,Tag USE port:plug device in, record ID showing on the tool. Tae zll. Success: 00000
2 &fter pluging device in, connect another untal dewice i1x doing upgrade.

. _ : o Fail: 00001
3.1led iz green,plug device in;led iz red,do not plug dewice in or out,

4. &fter finizhing upgrade, gresn to show =zucceszsz, red to zhow failure.

B. To show acecezsful dewice on the right of zrid and failed dewice om the laft of grid.

Total: 00001

Figure 8-2 Upgrade fail 1

Other SOC will fail at “Download Boot”:

.

Firmware Wer:5.0.00

Loader Ver:Z.30

| Dena Chip:RE32

ln] Fail Device List Drevice Type ID Upgrade Prompt 1D Sucoess -
| 1 = M My Computer
-3 RootHub20
--wige Portf1]
- Porif2]
-~ Port]3]
=% Porfd] L
okt Makom 5 TeaDeierd
=2 Portfé)
--#% Port{7)
=5 Port{B]
= Pontd]
-G Portf10]
o Pori{11]
2 Por{lZ]
% Port13]
-« Portfi4)
|
=2 Port{16] -

Wizard:

1.Firat uze, Tag USE port:plug dewica im, record ID showing on the tool. Tag all. Success: 00000
2. &fter pluging device in, connect another untal dewaice iz doing upgeace.

. o . N Fail: 00001
3.1led iz green,plug device in;led iz red,do not plug dewice in or out.
4. &fter finizhing upgrade, gresn to show success, red to show failuce. Total: 00001

B. To show sceoeszeful device on the right of zrid and failed dewice om the laft of grid.

Figure 8-3 Upgrade fail 2



9 Secure Debug

9.1 Introduction

The secure debug only support disabled secure boot verification feature for upgrade unsigned kernel to speed

up debugging.

There has a 128-bit unique CPU ID for each SOC. The Signed Tools read the CPU ID and using RSA private
key to Decryption and got a certificate, then the device using RSA public key to verify it. After the certificate is

verified, the device will disable secure boot verification in uboot.

9.2 Secure Debug Process


af://n562
af://n563
af://n566

	Rockchip Secure Boot Application Note
	Preface
	1 Architecture
	1.1 Secure Boot Process
	1.2 Secure Boot Sequence
	1.3 MaskRom Boot to the First Loader (RKminiLoader/U-Boot)
	1.4 First Loader boot to u-boot(Secondary Boot Loader,option)
	1.5 U-Boot Boot to Boot Image with Linux kernel
	1.6 U-Boot Boot to Recovery

	2 eFuse Layout
	3 Overall Operation Flow
	4 Make Update.img
	4.1 Generate Images
	4.2 Packet Update.img

	5 Firmware Sign Flow
	5.1 Generating RSA key
	5.2 Save RSA key
	5.3 Loading RSA key
	5.4 Configuration
	5.5 Sign Firmware

	6 Programming eFuse
	6.1 Hardware Conditions
	6.1.1 eFuse Programming
	6.1.2 OTP Programming

	6.2 Tool UI
	6.3 Load the Signed Firmware
	6.4 Click 'run' Button to Start
	6.5 Programming eFuse
	6.6 Programming OTP

	7 Firmware Upgrade
	7.1 Firmware Upgrade

	8 Verification
	8.1 Check Secure Flag
	8.2 Secure Boot Test

	9 Secure Debug
	9.1 Introduction
	9.2 Secure Debug Process



