
Rockchip Secure Boot Application Note  
ID: RK-SM-YF-024

Release Version: V2.2.0

Release Date: 2020-03-19

Security Level: □Top-Secret □Secret □Internal ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. FUZHOU ROCKCHIP ELECTRONICS CO., LTD.
(“ROCKCHIP”)DOES NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR
OTHERWISE, WITH RESPECT TO THE ACCURACY, RELIABILITY,
COMPLETENESS,MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE OR NON-
INFRINGEMENT OF ANY REPRESENTATION, INFORMATION AND CONTENT IN THIS DOCUMENT.
THIS DOCUMENT IS FOR REFERENCE ONLY. THIS DOCUMENT MAY BE UPDATED OR CHANGED
WITHOUT ANY NOTICE AT ANY TIME DUE TO THE UPGRADES OF THE PRODUCT OR ANY
OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip’s registered trademarks and owned by Rockchip. All the other
trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.

All rights reserved. ©2019. Fuzhou Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in
any form in whole or in part without the written approval of Rockchip.

Fuzhou Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com


Preface  

Terms :

Sector: Sector size is 512 bytes

eFuse: One-Time Programmable Memory IP in SOC

RSA Encryption: Use public key for encryption

RSA Decryption: Use private key for decryption

OTP: One-Time Programmable Memory IP in SOC

MaskRom: BootROM, Boot Read-Only Memory in SOC

loader: Boot Loader/First Loader, generally means RKMiniloader or SPL(uboot)

OBM CODE: Generally means the code compiled or trusted by OEM/OBM

Introduction

This document describes how to implement Rockchip secure boot solution.

Secure boot mechanism is for verifying firmware validity, which aims to prevent invalid firmware upgrade and
booting.

The device which had programmed eFuse will enable secure boot ROM, and could not boot from the un-signed
firmware. So trying to upgrade un-signed firmware or unmatched key signed firmware will fail.

NOTE: The valid signed firmware can boot smoothly on fake copies of device circuit board or same CPU
platform hardware. Secure boot will verify the validity of software, but not hardware.

This document applies to RK3126, RK3128, RK3228, RK3229, RK3288, RK3368, RK3399, RK3228H,
RK3328, RK3326, RK3308 and PX30.

Features of secure boot:

Support secure boot ROM
Support SHA256
Support RSA2048
Support eFuse or OTP hash to verify public key

The relative tool revision:

Efuse tool V1.35 or the latest revision
SecureBootTool 1.79 or the latest revision
RKBatchTool 1.8 or the latest revision(deprecated, Use FactoryTool instead)
FactoryTool 1.39 or the latest revision

History

af://n20


Revision Date Description Author

V1.0.0 2014-11-05 Original document ZYF

V1.1.0 2015-12-21 Update secure boot tool YBC

V1.2.0 2016-02-02 Update secure boot tool YHC

V1.3.0 2016-09-29 Re-edit ZYF

V1.4.0 2016-11-15 Add detailed description of workflow Joshua

V1.5.0 2016-11-16 1. Add terms and definitions.2. Add eFuse layout. Joshua

V1.6.0 2017-02-15 Add RK3328 and RK3228H. ZYF

V1.7.0 2017-05-19 Add sequence chart and note ZZJ

V1.8.0 2017-10-30 Refactor the format and add hardware info CW

V1.9.0 2018-06-05 Add OTP program public key hash flow CF

V2.0.0 2018-11-09 Add RK3336、PX30 and RK3308 OTP layout CF

V2.1.0 2019-10-29 Fix some error ZYF/CF

V2.2.0 2020-03-19 Fix some error ZYF



Contents

Rockchip Secure Boot Application Note
Preface
1 Architecture

1.1 Secure Boot Process
1.2 Secure Boot Sequence
1.3 MaskRom Boot to the First Loader (RKminiLoader/U-Boot)
1.4 First Loader boot to u-boot(Secondary Boot Loader,option)
1.5 U-Boot Boot to Boot Image with Linux kernel
1.6 U-Boot Boot to Recovery

2 eFuse Layout
3 Overall Operation Flow
4 Make Update.img

4.1 Generate Images
4.2 Packet Update.img

5 Firmware Sign Flow
5.1 Generating RSA key
5.2 Save RSA key
5.3 Loading RSA key
5.4 Configuration
5.5 Sign Firmware

6 Programming eFuse
6.1 Hardware Conditions

6.1.1 eFuse Programming
6.1.2 OTP Programming

6.2 Tool UI
6.3 Load the Signed Firmware
6.4 Click 'run' Button to Start
6.5 Programming eFuse
6.6 Programming OTP

7 Firmware Upgrade
7.1 Firmware Upgrade

8 Verification
8.1 Check Secure Flag
8.2 Secure Boot Test

9 Secure Debug
9.1 Introduction
9.2 Secure Debug Process



1 Architecture  

1.1 Secure Boot Process  

Figure 1-1 Secure boot process

1.2 Secure Boot Sequence  

Figure 1-2 Secure boot sequence

1.3 MaskRom Boot to the First Loader (RKminiLoader/U-Boot)  

af://n135
af://n136
af://n139
af://n142


0-63 sector 64 sector reverse

first loader(8128 sector)(5 copys) Boot loader partition

0-2047 loader header

2048-4095 public key and digital signature

4096 - raw binary

…  

Boot loader copy(4) partition  

0-2047 loader header

2048-4095 public key and digital signature

4096 - raw binary

Figure 1-3-1 MaskRom to loader sequence

First loader layout in user partition of flash

Table 1-1 First loader data layout

The structure of public key and digital signature layout at address 2048 to 4095:

typedef struct tagBOOT_HEADER

{

    uint32 tag;

    uint32 version;

    uint32 flags;

    uint32 size;

1

2

3

4

5

6



Public key: uint32 RSA_N[64], RSA_E[64], RSA_C[64] ;

Digital signature: uint32 signature[64]

Step1: Get public key from first loader partition.

Step2: Calculate the hash(SHA256) of public key and compare it with the the hash stored in OTP.If mathed,load
the first loader successfully, otherwise booting failed.

Step3: Calculate the hash(SHA256) of raw binary and compare it with RSA2048 encryption(have been
obtainde in step1) of digital signature. If matched, load first loader successfully, otherwise booting failed.

1.4 First Loader boot to u-boot(Secondary Boot Loader,option)  

Figure 1-4-1 boot to -uboot flow

    uint32 reserved1[3];

    uint16 HashBits;

    uint16 RSABits;        /* length in bits of modulus */

    uint32 RSA_N[64];      /* RSA public key*/

    uint32 RSA_E[64];

    uint32 RSA_C[64];

    uint32 HashData[(8+1)*2];

    uint32 signature[64];

}BOOT_HEADER, *PBOOT_HEADER;

7

8

9

10

11

12

13

14

15

af://n185


Table 1-4 u-boot layout in flash

The structure of header with digital digital signature layout at address 0 to 2047:

Digital signature: unsigned char rsaHash[256];

l Step 1: Get public key from first loader partition

l Step 2: Calculate the hash (sha256) of public key and compare it with hash in OTP, if matched go to next step,
otherwise booting failed.

l Step 3: Calculate the hash(SHA256) of raw binary and compare it with RSA2048 encryption (have been
obtained in step 1) of digital signature, if matched, loading successfully and deliver the public key to U-Boot,
otherwise booting failed.

1.5 U-Boot Boot to Boot Image with Linux kernel  

typedef struct tag_second_loader_hdr

{

    unsigned char magic[LOADER_MAGIC_SIZE];

    unsigned int version;

    unsigned int reserved0;

    unsigned int loader_load_addr;         /* load to DDR address */

    unsigned int loader_load_size;         /* size in bytes */

    unsigned int crc32;                    /* crc32 */

    unsigned int hash_len;                 /* 20 or 32 , 0 is no hash */

    unsigned char hash[LOADER_HASH_SIZE];  /* sha256 */

    unsigned int js_hash;                  /* js hsah */

    unsigned char reserved[1024-32-32-4];

    unsigned int signTag;                  /* 0x4E474953, "NGIS" */

    unsigned int signlen;                  /* 256 */

    unsigned char rsaHash[256];            /* digital signature */

    unsigned char reserved2[2048-1024-256-8];

}second_loader_hdr;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

af://n196


boot.img 0-2047 header

2048-4095 digital signature  

4096- kernel,ramdisk,dtb…  

…   

   

Figure 1-5 U-Boot to boot sequence

Table 1-2 Boot data layout

The structure of layout 0-2047(header):

#define BOOT_MAGIC_SIZE 8

#define BOOT_NAME_SIZE 16

#define BOOT_ARGS_SIZE 512

typedef struct tag_boot_img_hdr

{

    unsigned char magic[BOOT_MAGIC_SIZE]; /* "ANDROID!" */

    unsigned int kernel_size;             /* size in bytes */

    unsigned int kernel_addr;             /* physical load addr */

    unsigned int ramdisk_size;            /* size in bytes */

    unsigned int ramdisk_addr;            /* physical load addr */

    unsigned int second_size;             /* size in bytes */

    unsigned int second_addr;             /* physical load addr */

    unsigned int tags_addr;               /* physical addr for kernel tags 

*/

    unsigned int page_size;               /* flash page size we assume */

    unsigned int unused[2];               /* future expansion: should be 0 

*/

    unsigned char name[BOOT_NAME_SIZE];   /* asciiz product name */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16



Digital signature: unsigned char rsaHash[128];

l Step 1: U-Boot get public key obtained from first loader.

l Step 2: Calculate the hash (sha256) of public key and compare it with hash in OTP, if matched go to next step,
otherwise booting failed.

l Step 3: Hash(SHA256) of raw binary and compare it with RSA2048 encryption (using public key get in step
1) of digital signature, if matched, boot to linux kernel, otherwise booting failed.

1.6 U-Boot Boot to Recovery  

The same as boot to boot image, detail please refer to chapter 1.4.

    unsigned char cmdline[BOOT_ARGS_SIZE];

    unsigned int id[8];                   /* timestamp / checksum / sha1 / 

etc */

    unsigned char reserved[0x400-0x260];

    unsigned int signTag;                 /* 0x4E474953 */

    unsigned int signlen;                 /* 128 */

    unsigned char rsaHash[128];

}boot_img_hdr;

17

18

19

20

21

22

23

af://n227


32-bit Word Addressing Description

0x00 Security flagBits [7:0] security enable flag Bits [31:8] reserved

0x01-0x3 Reserved

0x04-0x07 Reserved

0x8-0xF RSA public key hash

0x10-0x17 Reserved

0x18 Reserved

0x19-0x1A Reserved

0x1B-0x1D Reserved

0x1E Reserved

0x1F eFuse write lock bits

32-bit Word
Addressing

Description

0-63 Public Key (N)

64-127 Public Key (E)

128
Security flagBits [7:0] 0xff: security enable flagBits [15:8] RSA_E size (word
uint)Bits [31:16] Reserved

129 Trusted Firmware revocation counter (ID #0)

130-131 Non-trusted Firmware revocation counter (ID #1)

132-239 Reserved

2 eFuse Layout  

RK3368, RK3288, RK3229 and RK3228 used 1024 bits eFuse for secure boot, data layout:

Table 2-1 eFuse data layout

RK3228H and RK3328 used 7680 bits OTP for secure boot, data layout:

Table 2-2 OTP data layout

RK3326、PX30 and RK3308 used 4096 bits OTP for secure boot, data layout:

Table 2-3 OTP data layout2

af://n231


32-bit Word Addressing Description

0 Secure boot enable flag

1-3 Reserved

4-11 RSA Public key hash(using SHA256)

12-19 Device root key

20-23 FW encryption key

24-25 Trusted Firmware revocation counter (ID #0)

26-31 Non-trusted Firmware revocation counter (ID #1)

32-97 Reserved for OEM



3 Overall Operation Flow  

Enable secure boot flow：

1. Package update.img
2. Sign Firmware(update.img)
3. Program EFUSE or OTP
4. Upgrade Firmware(update.img)
5. Check secure boot enable

Figure 3-1 Secure boot operation process

af://n325


4 Make Update.img  

4.1 Generate Images  

After build Android,use the following script to generate images:

./mkimage.sh ota

Figure 4-1 Script to generate images

4.2 Packet Update.img  

Refer to RKTools/windows/AndroidTool/rockdev/package-file. This file controls which files will be packaged.

Take RK3288, for example. Change bootloader path, commentaries resource and kernel lines, set backup to
RESERVED.

Figure 4-2 Package-file to control the packaging

Copy RKTools/windows folders to windows system, then run AndroidTool/rockdev/mkupdate.bat to generate
the update.img.

af://n342
af://n343
af://n348


Figure 4-3 Script-to-generate-images



5 Firmware Sign Flow  

This instruction is for Windows tools, while Linux has its own.

5.1 Generating RSA key  

Figure 5-1 SecureBootTool generates RSA key

5.2 Save RSA key  

This key will be used for signed firmware and for OTA, please back up to a secure storage.

NOTE: The keypair is VERY important! Make sure to save it securely. Once you lost it or leak it, your product
will be exposed in high risk, also the old device will be unable to be updated anymore.It should be maintained
through the whole product life cycle

af://n357
af://n359
af://n362


Figure 5-2 SecureBootTool saves RSA key

5.3 Loading RSA key  

Figure 5-3 SecureBootTool loads RSA key

5.4 Configuration  

Choose SOC platform

af://n367
af://n370


:

Option ‘efuse’ means using eFuse to store the hash of the RSA public key, and will enable secure boot
ROM(recommended).

Option ‘soft’ is for some special applications, will not enable secure boot ROM, used RSA1024 and SHA160.

Every product model will generate RSA KEY only once, please backup in case that you cannot upgrade
firmware or OTA again.

Loading backup RSA key (support ‘.pem’ file format generated by openssl)

Sign firmware

5.5 Sign Firmware  

Make sure the ‘boot.img’ and the ‘recovery.img’ are included in the kernel image.

Refer to the pack command:

Figure 5-4 Images’pack command

Open firmware image:

af://n382


Figure 5-5 SecureBootTool selects firmware

Signed firmware:

Figure 5-6 Secure Boot Tool-signed firmware



6 Programming eFuse  

6.1 Hardware Conditions  

For Rockchip AP series, there are two ways to program user secure data. One is "eFuse programming", the other
is "OTP programming"(only few chips support). Following is the introduction.

6.1.1 eFuse Programming  

RK3126, RK3128, RK3228, RK3229, RK3288, RK3368 and RK3399 support eFuse programming, following is
the general requirements:

A. If products do not need eFuse data programming, we advise to connect eFuse Power Pin directly to GND.
Avoiding eFuse data change caused by misoperation. (RK3126/RK3126C eFuse Power Pin is reused with
SARADC function, so that it would not to be grounded.)

B. If products need eFuse programming, then connect a pull down resistance to GND on eFuse Power Pin, to
make sure that eFuse power pin doesn't fluctuate in normal work condition. also to avoid eFuse data change
caused by misoperation. This pull-down resistance value, please refer to each chip platform's reference
schematics, generally it's at a range of 47Ω-10KΩ.

C. There are two types of power supply for eFuse programming:

a) Onboard power supply mode

Advantage: PCBA socket test board is not needed, you can program eFuse data first, and then upgrade the
firmware. When system works in normal condition, the firmware must make sure that eFuse power is not
on,keep 0V to prevent misoperation.
Disadvantange: Power supply circuit must placement on the board. The material cost is increased, and you
need to make sure the firmware is no misoperation at any time.
Apply to: This power supply mode applies to customers who don't want to add PCBA testing process. For
example some BOX products, their interfaces and assembling are both simple, not need socket board to use
on the PCBA test.

b) Power supply by PCBA test board(recommended)

Advantage: Only test points needed. It is no power supply circuit on board so users can't crack through
software too.
Disadvantage: Increase PCBA test process, the test cost is higher.

l Apply to: Products like tablets, their assembling is complicated. If PCBA is abnormal, it 's more complicated to
rework and replace, so these kinds of products usually have PCBA testing process, Programming eFuse on this
process is reasonable.

D. Electronic circuit introduction:

Each chip platform’s eFuse power supply voltage is different(such as 1.5/1.8/2.5V), power supply pin number
and current requirement is also different.

we recommend that power supply capacity should be 50mA above, for detailed voltage and pull-down resistance
value, you can refer to schematic diagram. Summarized advices are below:

Table 6-1 Hardware parameters

af://n395
af://n396
af://n398


Chip Part
Number

eFusePower
Programming
Mode

VQPS
Current
Requirement

Pull-down
Resistance
Value

eFusePower
Pin Number

Remark

RK3126/RK3126C 2.5V
Power by
PCBA test
board

>50mA None PIN68
Reused
with
ADC

RK3128 2.5V
Onboard or
powered by
external

>50mA <=10K R10  

RK3168/RK3188 1.5V
Onboard or
powered by
external

>50mA <=510R Y10  

RK3228/RK3229 1.6V
Onboard or
powered by
external

>50mA <=100R R10  

RK3288 1.5V
Onboard or
powered by
external

>50mA <=510R P19  

RK3368 1.5V
Onboard or
powered by
external

>50mA <=47R Y10  

RK3399 1.8V
Onboard or
powered by
external

>50mA <=1K AD23  

Recommended power supply mode is shown as below diagram.

a) PartA: eFuse power supply circuit, please choose suitable LDO part number according to the voltage
requirement above, this part circuit can be placed on mainboard, and also can be placed on the PCBA test board.

b) PartB: eFuse power pin with pull down resistance R4(47R-10K), keep the voltage low level to avoid
misoperation. If power supply circuit is placed on the PCBA test board, the SOC mainboard needs to add
responding testing points, to facilitate fixture pin touch.

Attention:

a) RK3126C's eFuse power is reused with ADC function, so it can't connect pull-down resistance.

b) RK3228/RK3229's eFuse power supply is suggest to be adjusted to 1.55-1.6V, to be more stabled.

c) If the device uses onboard power supply mode, please make sure eFuse_PWREN, which is in the following
diagram be distributed an independent GPIO to control the LDO. It must make sure there is no power output on
VCC_eFuse PIN in normal work condition. Details refer to reference schematic that RK released, if there is no
GPIO distributed, contact us or use external power supply mode.



Figure 6-1 eFuse circuit

6.1.2 OTP Programming  

RK3328 and RK3228H support OTP programming mode, this mode is no need external power supply circuit,
OTP_VCC18(PIN16) is always powered by VCC_18. you only need to run the special time sequence for OTP
programming, not need the additional changes aboout hardware.

Figure 6-2 OTP circuit

6.2 Tool UI  

Figure 6-3 eFuse tool UI

6.3 Load the Signed Firmware  

af://n496
af://n500
af://n503


Figure 6-4 Load signed firmware

6.4 Click 'run' Button to Start  

Figure 6-5 Programming the chip

6.5 Programming eFuse  

Connect the device to the PC by USB cable; the tool will program the hash of RSA public key to eFuse
automatically.

Programming eFuse needs an external power supply, the detail information please refer to SOC's DATASHEET.

Notice:RK3228H,RK3328,RK3336,RK3308 and PX30 don’t need step 6.2 to 6.4. Programming will be done by
upgrading firmware which has been signed.

6.6 Programming OTP  

af://n506
af://n509
af://n513


RK3228H,RK3328,RK3326,RK3308 and PX30 support OTP programming. Public key hash need program to
OTP. Programming OTP performs are :

1. First, follow the above steps to burn signed firmware. If the machine can start normally，the signature
process is correct. Then OTP can be programed.

2. The signature tool uses version of SecureBootTool V1.9 or more. Open the config.ini file in the tools
directory. Find "sign_flag="，set"sign_flag=0x20"(bit 5 set 1) which enable write OTP in RKMiniLoader.
Save config.ini file. Reopen SecureBootTool.exe to sign firmware or RKMiniLoader.

Figure 6-6-1 SecureBootTool

Figure 6-6-2 config.ini

3. Use re-signed firmware or RKMiniLoader burnning. After burnning, restart the machine. The
RKMiniLoader will be responsible for generating hash of public key and writing it to OTP during startup
and enable secure boot.



Figure 6-6-3 OTP program flow

4. If OTP program success, serial port print “otp write key success!!!”. If OTP program fail, serial port
print"otp write error: !!!".



7 Firmware Upgrade  

7.1 Firmware Upgrade  

Open the signed firmware and connect the device which has programmed eFuse to the PC by USB cable:

Figure 7-1 Upgrade tool 1

Select ‘Upgrade’ option and Click "Run" button to start firmware upgrade and wait it to be completed:

af://n534
af://n535


Figure 7-2 Upgrade tool 2



8 Verification  

8.1 Check Secure Flag  

Use serial port tools (e.g. SecureCRT) to get the log of system boot. These words show that the security boot is
on:

Secure Boot Mode: 0x1 or SecureMode = 0x1

Figure 8-1 Log of system boot

8.2 Secure Boot Test  

The device which had programmed eFuse will enable secure boot rom, and could not boot from the un-signed
firmware.

So try to upgrade un-signed firmware or unmatched key signed firmware will fail;

And upgrade matched signed firmware will boot success.

SOC RK3128 and RK3126 will fail at “wait for loader”:

af://n544
af://n545
af://n550


Figure 8-2 Upgrade fail 1

Other SOC will fail at “Download Boot”:

Figure 8-3 Upgrade fail 2



9 Secure Debug  

9.1 Introduction  

The secure debug only support disabled secure boot verification feature for upgrade unsigned kernel to speed
up debugging.

There has a 128-bit unique CPU ID for each SOC. The Signed Tools read the CPU ID and using RSA private
key to Decryption and got a certificate, then the device using RSA public key to verify it. After the certificate is
verified, the device will disable secure boot verification in uboot.

9.2 Secure Debug Process  

af://n562
af://n563
af://n566

	Rockchip Secure Boot Application Note
	Preface
	1 Architecture
	1.1 Secure Boot Process
	1.2 Secure Boot Sequence
	1.3 MaskRom Boot to the First Loader (RKminiLoader/U-Boot)
	1.4 First Loader boot to u-boot(Secondary Boot Loader,option)
	1.5 U-Boot Boot to Boot Image with Linux kernel
	1.6 U-Boot Boot to Recovery

	2 eFuse Layout
	3 Overall Operation Flow
	4 Make Update.img
	4.1 Generate Images
	4.2 Packet Update.img

	5 Firmware Sign Flow
	5.1 Generating RSA key
	5.2 Save RSA key
	5.3 Loading RSA key
	5.4 Configuration
	5.5 Sign Firmware

	6 Programming eFuse
	6.1 Hardware Conditions
	6.1.1 eFuse Programming
	6.1.2 OTP Programming

	6.2 Tool UI
	6.3 Load the Signed Firmware
	6.4 Click 'run' Button to Start
	6.5 Programming eFuse
	6.6 Programming OTP

	7 Firmware Upgrade
	7.1 Firmware Upgrade

	8 Verification
	8.1 Check Secure Flag
	8.2 Secure Boot Test

	9 Secure Debug
	9.1 Introduction
	9.2 Secure Debug Process



