#命令行签名工具用户手册

发布版本: 1.0

作者邮箱: liuyi@rock-chips.com

日期: 2021-12-27

文档密级:公开资料

前言3399|3328

概述

命令行签名工具为开发人员提供了固件|Loader|Uboot|Trust|Boot|DDR测试文件的签名和校验功能。

支持芯片

3588|3566|3568|3308|3326|3399|3229|3228h|3368|3228|3288|px30|3328|1808|3228P|1109|1126|2 206

读者对象

本文档主要适用于开发人员

修订记录

日期	版本	工具版本	作者	修改说明
2021-12-27	V1.0	V1.0	刘翊	初稿

使用算法

芯片	摘要算 法	签名算 法	签名均
3229 3228h 3368 3228 3288 3399 3328	SHA256	RSA2048	NO PADD
3588 3566 3568 3308 3326 px30 1808 3228P 1109 1126 2206	SHA256	RSA2048	PSS PADD

1. 签名前准备

1.1 生成RSA公私钥对

//产生rsa2048公私钥
sign_tool kk --bits=2048
or
sign_tool kk

*******sign_tool ver 1.0******* bits is 2048 start to generate key... saving private key at private_key.pem... saving public key at public_key.pem... generating key ok.

1.2 选择芯片类型

签名前需要先选定芯片,选择会被记录,后续签名操作的芯片没有变化可以不用再选择

//例:选择1126芯片 sign_tool cc --chip=1126

```
*******sign_tool ver 1.0*******
set chip is 3568
setting chip ok.
```

1.3 选择RSA公私钥

签名前需要先选定使用的RSA密钥,选择会被记录,后续签名操作的密钥没有变化可以不用再选择

//加载私钥private_key.pem, 公钥public_key.pem
sign_tool.exe lk --key private_key.pem --pubkey public_key.pem

*******sign_tool ver 1.0********
private key is .\private_key.pem
public key is .\public_key.pem
loading key ok.

1.4 签名Flag配置

可选功能,主要是进行Secureboot功能相关参数的设置

//例:开启miniloader写OTP功能
sign_tool ss --flag=0x20

```
******sign_tool ver 1.0*******
sign flag is 0x20
setting sign argument ok.
```

1.5 设置中间数据保存路径

这个参数是一个目录路径,签名过程会将中间路径保存在此目录,或者是从此目录读取输入数据。主要使用在外部签名的情况

sign_tool ss --out .\data_out

2.签名操作

2.1 Update固件签名

Update固件的签名过程会对固件包中的loader,uboot,boot,trust等内容进行签名,由于过程涉及 到update固件的解包和重新打包,时间会比较长。

**注:如果方案使用了ab分区,那么boot镜像的签名不通过工具来执行,所以请打开工具下的 setting.ini文件,将exclude_boot_sign=true

//签名update.img
sign_tool sf --firmware update.img
//校验已签名的update.img
sign_tool vf --firmware update.img

2.2 Loader签名

Loader的签名过程会对Loader文件进行解包插入生成的安全结构再重新打包。

//签名Loader
sign_tool sl --loader miniloader.bin
//校验已签名的loader
sign_tool vl --loader miniloader.bin

2.3 IDBlock签名

IDBlock是系统启动块包括引导数据结构, DDR初始化代码和Boot代码, 由mkimage工具生成

//签名IDBlock
sign_tool sb --idb 1126_idblock.bin
//校验已签名的IDBlock
sign_tool vb --idb 1126_idblock.bin

2.4 DDR测试文件签名

//签名DDR测试文件
sign_tool sd --cfg 1126_ddr_test.cfg
//校验已签名的DDR测试文件
sign_tool vd --cfg 1126_ddr_test.cfg

2.5 镜像签名(uboot|trust|boot)

//签名uboot.img
sign_tool si --img uboot.img
//校验已签名的uboot.img
sign_tool vi --img uboot.img

3. 外部签名操作

3.1**提取签名数据**

此操作可以只指定公钥,提取出所有需要签名的数据到指定目录

//设置签名提取标志
sign_tool ss --extract
//设置待签名数据的提取存放目录
sign_tool ss --out wait_sign_dir
//提取update.img中的签名数据(可以是所有章节2中的签名操作)
sign_tool sf --firmware update.img

3.2 进行外部签名

对wait_sign_dir**目录中的所有文件进行私钥签名,签名后的数据保存成同名文件放置** wait_sign_dir下

```
//openssl进行pss填充和rsa 2048签名的方法
openssl pkeyutl -sign
-in to_sign.bin -inkey privatekey.pem
-out signed.bin
-pkeyopt digest:sha256
-pkeyopt rsa_padding_mode:pss
-pkeyopt rsa_pss_saltlen:-1
//openssl进行不填充和rsa 2048签名的方法
1.创建256字节buffer,填充0
2.拷贝sha256摘要到尾部32字节
3.使用openssl进行rsa2048签名
openssl rsautl -sign -in to_sign.bin -inkey privatekey.pem -raw -out signed.bin
```

3.3 注入签名数据

此操作会将wait_sign_dir中的所有签名数据注入到签名位置

//设置签名注入标志
sign_tool ss --inject
//注入签名数据到update.img中
sign_tool sf --firmware update.img