# Quickstart: SQL-based analysis and trace-based metrics _This quickstart explains how to use `trace_processor` as well as its Python API to programmatically query the trace contents through SQL and compute trace-based metrics._ ## Trace Processor TraceProcessor is a multi-format trace importing and query engine based on SQLite. It comes both as a C++ library and as a standalone executable: `trace_processor_shell` (or just `trace_processor`). ### Setup ```bash # Download prebuilts (Linux and Mac only) curl -LO https://get.perfetto.dev/trace_processor chmod +x ./trace_processor # Start the interactive shell ./trace_processor trace.perfetto-trace # Start a local trace processor instance to replace wasm module in the UI ./trace_processor trace.perfetto-trace --http ``` NOTE: In HTTP mode the trace will be loaded into the `trace_processor` and the UI will connect and issue queries over TCP. This can allow arbitrary sized traces to be loaded since there are no memory constraints, unlike the WASM module. In addition, this can improve performance in the UI as it issues SQL queries. See [Trace Processor docs](/docs/analysis/trace-processor.md) for the full TraceProcessor guide. ### Sample queries For more exhaustive examples see the _SQL_ section of the various _Data sources_ docs. #### Slices Slices are stackable events which have name and span some duration of time. ![](/docs/images/slices.png "Example of slices in the UI") ``` > SELECT ts, dur, name FROM slice ts dur name -------------------- -------------------- --------------------------- 261187017446933 358594 eglSwapBuffersWithDamageKHR 261187017518340 357 onMessageReceived 261187020825163 9948 queueBuffer 261187021345235 642 bufferLoad 261187121345235 153 query ... ``` #### Counters Counters are events with a value which changes over time. ![](/docs/images/counters.png "Example of counters in the UI") ``` > SELECT ts, value FROM counter ts value -------------------- -------------------- 261187012149954 1454.000000 261187012399172 4232.000000 261187012447402 14304.000000 261187012535839 15490.000000 261187012590890 17490.000000 261187012590890 16590.000000 ... ``` #### Scheduler slices Scheduler slices indicate which thread was scheduled on which CPU at which time. ![](/docs/images/sched-slices.png "Example of scheduler slices in the UI") ``` > SELECT ts, dur, cpu, utid FROM sched ts dur cpu utid -------------------- -------------------- -------------------- -------------------- 261187012170489 267188 0 390 261187012170995 247153 1 767 261187012418183 12812 2 2790 261187012421099 220000 6 683 261187012430995 72396 7 2791 ... ``` ### Trace-based metrics Trace Processor offers also a higher-level query interface that allows to run pre-baked queries, herein called "metrics". Metrics are generally curated by domain experts, often the same people who add the instrumentation points in the first place, and output structured JSON/Protobuf/text. Metrics allow to get a summarized view of the trace without having to type any SQL or having to load the trace in the UI. The metrics` schema files live in the [/protos/perfetto/metrics](/protos/perfetto/metrics/) directory. The corresponding SQL queries live in [/src/trace_processor/metrics](/src/trace_processor/metrics/). #### Run a single metric Let's run the [`android_cpu`](/protos/perfetto/metrics/android/cpu_metric.proto) metric. This metrics computes the total CPU time and the total cycles (CPU frequency * time spent running at that frequency) for each process in the trace, breaking it down by CPU (_core_) number. ```protobuf ./trace_processor --run-metrics android_cpu trace.perfetto-trace android_cpu { process_info { name: "/system/bin/init" threads { name: "init" core { id: 1 metrics { mcycles: 1 runtime_ns: 570365 min_freq_khz: 1900800 max_freq_khz: 1900800 avg_freq_khz: 1902017 } } core { id: 3 metrics { mcycles: 0 runtime_ns: 366406 min_freq_khz: 1900800 max_freq_khz: 1900800 avg_freq_khz: 1902908 } } ... } ... } process_info { name: "/system/bin/logd" threads { name: "logd.writer" core { id: 0 metrics { mcycles: 8 runtime_ns: 33842357 min_freq_khz: 595200 max_freq_khz: 1900800 avg_freq_khz: 1891825 } } core { id: 1 metrics { mcycles: 9 runtime_ns: 36019300 min_freq_khz: 1171200 max_freq_khz: 1900800 avg_freq_khz: 1887969 } } ... } ... } ... } ``` #### Running multiple metrics Multiple metrics can be flagged using comma separators to the `--run-metrics` flag. This will output a text proto with the combined result of running both metrics. ```protobuf $ ./trace_processor --run-metrics android_mem,android_cpu trace.perfetto-trace android_mem { process_metrics { process_name: ".dataservices" total_counters { anon_rss { min: 19451904 max: 19890176 avg: 19837548.157829277 } file_rss { min: 25804800 max: 25829376 avg: 25827909.957489081 } swap { min: 9289728 max: 9728000 avg: 9342355.8421707246 } anon_and_swap { min: 29179904 max: 29179904 avg: 29179904 } } ... } ... } android_cpu { process_info { name: "/system/bin/init" threads { name: "init" core { id: 1 metrics { mcycles: 1 runtime_ns: 570365 min_freq_khz: 1900800 max_freq_khz: 1900800 avg_freq_khz: 1902017 } } ... } ... } ... } ``` #### JSON and binary output The trace processor also supports binary protobuf and JSON as alternative output formats. This is useful when the intended reader is an offline tool. Both single and multiple metrics are supported as with proto text output. ``` ./trace_processor --run-metrics android_mem --metrics-output=binary trace.perfetto-trace ./trace_processor --run-metrics android_mem,android_cpu --metrics-output=json trace.perfetto-trace { "android_mem": { "process_metrics": [ { "process_name": ".dataservices", "total_counters": { "anon_rss": { "min": 19451904.000000, "max": 19890176.000000, "avg": 19837548.157829 }, "file_rss": { "min": 25804800.000000, "max": 25829376.000000, "avg": 25827909.957489 }, "swap": { "min": 9289728.000000, "max": 9728000.000000, "avg": 9342355.842171 }, "anon_and_swap": { "min": 29179904.000000, "max": 29179904.000000, "avg": 29179904.000000 } }, ... }, ... ] } "android_cpu": { "process_info": [ { "name": "\/system\/bin\/init", "threads": [ { "name": "init", "core": [ { "id": 1, "metrics": { "mcycles": 1, "runtime_ns": 570365, "min_freq_khz": 1900800, "max_freq_khz": 1900800, "avg_freq_khz": 1902017 } }, ... ] ... } ... ] ... }, ... ] ... } } ``` ## Python API The API can be run without requiring the `trace_processor` binary to be downloaded or installed. ### Setup ``` $ pip install perfetto ``` NOTE: The API is only compatible with Python3. ### Example functions See the Python API section of [Trace Processor (SQL)](/docs/analysis/trace-processor.md) to get more details on all available functions. #### Query ```python from perfetto.trace_processor import TraceProcessor tp = TraceProcessor(trace='trace.perfetto-trace') qr_it = tp.query('SELECT name FROM slice') for row in qr_it: print(row.name) ``` **Output** ``` eglSwapBuffersWithDamageKHR onMessageReceived queueBuffer bufferLoad query ... ``` #### Query as Pandas DataFrame ```python from perfetto.trace_processor import TraceProcessor tp = TraceProcessor(trace='trace.perfetto-trace') qr_it = tp.query('SELECT ts, name FROM slice') qr_df = qr_it.as_pandas_dataframe() print(qr_df.to_string()) ``` **Output** ``` ts name -------------------- --------------------------- 261187017446933 eglSwapBuffersWithDamageKHR 261187017518340 onMessageReceived 261187020825163 queueBuffer 261187021345235 bufferLoad 261187121345235 query ... ``` #### Metric ```python from perfetto.trace_processor import TraceProcessor tp = TraceProcessor(trace='trace.perfetto-trace') cpu_metrics = tp.metric(['android_cpu']) print(cpu_metrics) ``` **Output** ``` metrics { android_cpu { process_info { name: "/system/bin/init" threads { name: "init" core { id: 1 metrics { mcycles: 1 runtime_ns: 570365 min_freq_khz: 1900800 max_freq_khz: 1900800 avg_freq_khz: 1902017 } } core { id: 3 metrics { mcycles: 0 runtime_ns: 366406 min_freq_khz: 1900800 max_freq_khz: 1900800 avg_freq_khz: 1902908 } } ... } ... } ... } } ``` ## Next steps There are several options for exploring more of the trace analysis features Perfetto provides: * The [trace conversion quickstart](/docs/quickstart/traceconv.md) gives an overview on how to convert Perfetto traces to legacy formats to integrate with existing tooling. * The [Trace Processor documentation](/docs/analysis/trace-processor.md) gives more information about how to work with trace processor including details on how to write queries and how tables in trace processor are organized. * The [metrics documentation](/docs/analysis/metrics.md) gives a more in-depth look into metrics including a short walkthrough on how to build an experimental metric from scratch. * The [SQL table reference](/docs/analysis/sql-tables.autogen) gives a comprehensive guide to the all the available tables in trace processor. * The [common tasks](/docs/contributing/common-tasks.md) page gives a list of steps on how new metrics can be added to the trace processor.