
www.rock-chips.com

Classification Level: Top secret () Secret () Internal () Public (√)

RKNN-Toolkit2 User Guide

(Technology Department, Graphic Computing Platform Center)

Mark:

[] Editing

[√] Released

Version V1.5.2

Author HPC

Completed Date 2023-8-21

Reviewer Vincent

Reviewed Date 2023-8-21

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd

(Copyright Reserved)

www.rock-chips.com

2

Revision History

Version Modifier Date Modify description Reviewer

V0.5.0 HPC 2021-1-13 Initial version Vincent

V0.6.0 HPC 2021-2-24

1. Update Hybrid Quantization

2. Update RKNN initialization

3. Update Caffe load API

Vincent

V0.7.0 HPC 2021-3-30

1. Update Mmse support

2. Update some interface

3. Update explanation and suggestion of

quantization algorithm

Vincent

V1.0.0 HPC 2021-4-21

1. Update config (remove reorder_channel,

custom_string add quant_img_RGB2BGR,

custom_string)

2. add list_devices and get_sdk_version

description

3. add eval_perf and eval_memory

description

Vincent

V1.1.0 HPC 2021-6-30

1. Update Hybrid Quantization interface

2. Update MMSE interface

3. Update Quantitative Accuracy Analysis

interface

4. Add Accuracy Troubleshooting chapter

Vincent

V1.2.0 HPC 2022-1-10

1. Update load_onnx / load_pytorch /

load_tensorflow / init_runtime / eval_perf

interface

2. Update for RK3588

Vincent

V1.2.5 HPC 2022-4-1

1. Update export_encrypted_rknn_model

interface

2. Update for RV1103 / RV1106

Vincent

V1.3.0 HPC 2022-4-22 1. Update verison Vincent

V1.4.0 HPC 2022-8-20
1. Update config / init_runtime interface

2. Update “Usage of RKNN-Toolkit2”
Vincent

V1.4.2 HPC 2023-2-10
1. Update “Quantitative accuracy

analysis”
Vincent

www.rock-chips.com

3

Version Modifier Date Modify description Reviewer

2. Add chapter 1.4

3. Update “Hybrid Quantization”

4. Update for RK3562

V1.5.0 HPC 2023-5-18

1. Modify the definition of whl package

2. Add configuration:

model_pruning/op_target/dynamic_input

3. Update interface:

load_tensorflow/load_tflite/load_onnx/exp

ort_rknn

Vincent

V1.5.2 HPC 2023-8-21
1. Update dynamic_input configuration

2. Update “Requirements/Dependencies”
Vincent

www.rock-chips.com

4

Table of Contents

1 Overview ... 1

1.1 Main function description ...1

1.2 Applicable chip model .. 2

1.3 Applicable Operating System ... 2

1.4 Applicable Deep Learning Framework ...3

2 Requirements/Dependencies ... 5

3 User Guide .. 6

3.1 Installation .. 6

3.1.1 Install by pip command ..6

3.1.2 Install by the Dockerfile .. 7

3.1.3 Install by the Docker Image ...8

3.2 Usage of RKNN-Toolkit2 ...10

3.2.1 Scenario 1: Inference for Simulation on PC ..10

3.2.2 Scenario 2: Run on Rockchip NPU connected to the PC. ... 11

3.3 Hybrid Quantization ... 14

3.3.1 Instructions of hybrid quantization ..14

3.3.2 Hybrid quantization profile ... 14

3.3.3 Usage flow of hybrid quantization ...15

3.4 Example .. 18

3.5 RKNN-Toolkit2 API description .. 20

3.5.1 RKNN object initialization and release ... 20

3.5.2 RKNN model configuration ... 20

3.5.3 Loading model ... 24

3.5.4 Building RKNN model ... 29

www.rock-chips.com

5

3.5.5 Export RKNN model .. 30

3.5.6 Loading RKNN model ..31

3.5.7 Initialize the runtime environment ...32

3.5.8 Inference with RKNN model .. 33

3.5.9 Evaluate model performance ...36

3.5.10 Evaluating memory usage ... 36

3.5.11 Get SDK version .. 37

3.5.12 Hybrid Quantization .. 38

3.5.13 Quantitative accuracy analysis ... 40

3.5.14 List Devices ..42

3.5.15 Export encrypted RKNN model ... 43

3.6 Accuracy troubleshooting ... 45

3.6.1 Simulator accuracy troubleshooting ..45

3.6.2 Runtime accuracy troubleshooting .. 52

1

1 Overview

1.1 Main function description

RKNN-Toolkit2 is a development kit that provides users with model conversion, inference and

performance evaluation on PC platforms. Users can easily complete the following functions through the

Python interface provided by the tool:

1） Model conversion: support to convert Caffe / TensorFlow / TensorFlow Lite / ONNX / Darknet

/ PyTorch model to RKNN model, support RKNN model import/export, which can be used on

Rockchip NPU platform later.

2） Quantization: support to convert float model to quantization model, currently support quantized

methods including asymmetric quantization (asymmetric_quantized-8). and support hybrid

quantization.

3） Model inference: Able to simulate NPU to run RKNN model on PC and get the inference result.

This tool can also distribute the RKNN model to the specified NPU device to run, and get the

inference results.

4） Performance & Memory evaluation: distribute the RKNN model to the specified NPU device to

run, and evaluate the model performance and memory consumption in the actual device.

5） Quantitative error analysis: This function will give the Euclidean or cosine distance of each

layer of inference results before and after the model is quantized. This can be used to analyze

how quantitative error occurs, and provide ideas for improving the accuracy of quantitative

models.

6） Model encryption: Use the specified encryption method to encrypt the RKNN model as a

whole.

2

1.2 Applicable chip model

 RK3566

 RK3568

 RK3588 / RK3588S

 RV1103

 RV1106

 RK3562

Note: RK3588 is referred to as RK3588 / RK3588S in the following text.

1.3 Applicable Operating System

RKNN Toolkit2 supported operating systems are as follows:

 Ubuntu: 18.04 (x64)

 Ubuntu: 20.04 (x64)

 Ubuntu: 22.04 (x64)

3

1.4 Applicable Deep Learning Framework

The deep learning frameworks supported by RKNN Toolkit2 include Caffe, TensorFlow,

TensorFlow Lite, ONNX, Darknet and Pytorch.

The corresponding relationship between RKNN Toolkit2 and the version of each deep learning

framework is as follows:

RKNN Toolkit2 Caffe TensorFlow TF Lite ONNX Darknet Pytorch

1.4.0/1.4.2/1.5.0/

1.5.2

1.0 1.12.0~2.8.0 Schema

version = 3

1.7.0~1.10.0 Commit

ID:

810d7f7

1.6.0~1.10.1

Note:

1. According to the protobuf version, any graph or checkpoint built with a certain version of

TensorFlow can be loaded and evaluated by a higher (minor or patch) version of TensorFlow in

the same major version. Theoretically, the pb files generated by TensorFlow with versions

before 1.14 are supported by RKNN Toolkit2 1.4.0 and later versions. For more information

about the compatibility of different TensorFlow versions, please refer to official documentation:

https://www.tensorflow.org/guide/version_compat?hl=zh-CN

2. Since the schemas of different versions of TFLite are incompatible with each other, TFLite

model exported from a different schema compared to the schema version RKNN Toolkit2 relies

may cause loading failure.

3. The caffe protocols used by RKNN Toolkit2 is the protocol based on the official modification

of berkeley. The protocol based on berkeley's official modification comes from:

https://www.tensorflow.org/guide/version_compat?hl=zh-CN

4

https://github.com/BVLC/caffe/tree/master/src/caffe/proto, and the commit ID is 828dd10.

RKNN Toolkit2 adds some OPs on this basis.

4. For the relationship between ONNX release versions and opset versions and IR versions, please

refer to the onnxruntime official website:

https://github.com/microsoft/onnxruntime/blob/v1.10.0/docs/Versioning.md

5. The official Github link of Darknet: https://github.com/pjreddie/darknet. RKNN Toolkit2’s

current conversion rules are based on the latest submission of the master branch (commit

number: 810d7f7).

6. When loading the Pytorch model (torchscript model), it is recommended using the same

version of Pytorch to export model and convert model to RKNN model. Inconsistency may

result in failure when transferring to the RKNN model.

https://github.com/BVLC/caffe/tree/master/src/caffe/proto
https://github.com/pjreddie/darknet，RKNN

5

2 Requirements/Dependencies

It is recommended to meet the following requirements in the operating system environment:

Table 1 Operating system environment

Operating system

version

Ubuntu18.04 (x64) Ubuntu20.04 (x64) Ubuntu22.04 (x64)

Python version 3.6 3.8 3.10

Note:

1. For more detail about python library dependencies, see doc/requirements*.txt

2. This document mainly uses Ubuntu 18.04 / Python3.6 as an example.

6

3 User Guide

3.1 Installation

There are two ways to install RKNN-Toolkit2: one is through the Python package installation and

management tool pip, the other is running docker image with full RKNN-Toolkit2 environment.

The specific steps of the two installation ways are described below.

3.1.1 Install by pip command

1. Create virtualenv environment. If there are multiple versions of the Python environment in the

system, it is recommended to use virtualenv to manage the Python environment.

sudo apt install virtualenv
sudo apt-get install python3 python3-dev python3-pip
sudo apt-get install libxslt1-dev zlib1g zlib1g-dev libglib2.0-0 \
libsm6 libgl1-mesa-glx libprotobuf-dev gcc

virtualenv -p /usr/bin/python3 venv
source venv/bin/activate

2. Install dependent libraries:

pip3 install -r doc/requirements_cpxx.txt

3. Install RKNN-Toolkit2:

pip3 install packages/rknn_toolkit2-1.x.x+xxxxxxxx-cpxx-cpxx-linux_x86_64.whl

Please select corresponding installation package (located at the packages/ directory) according to

different python versions and processor architectures:

 Python3.6 for x86_64: rknn_toolkit2-1.x.x+xxxxxxxx-cp36-cp36m-linux_x86_64.whl

 Python3.8 for x86_64: rknn_toolkit2-1.x.x+xxxxxxxx-cp38-cp38-linux_x86_64.whl

 Python3.10 for x86_64: rknn_toolkit2-1.x.x+xxxxxxxx-cp310-cp310-linux_x86_64.whl

7

3.1.2 Install by the Dockerfile

In docker/docker_file folder, there is Dockerfile that can create RKNN-Toolkit2 developed

environment, Users only need to create the docker image and can directly use RKNN-toolkit2, detailed

steps are as follows:

1. Install Docker:

Please install Docker according to the official manual:

https://docs.docker.com/install/linux/docker-ce/ubuntu/

2. Create Docker image:

Execute the following command to create Docker image:

cd docker/docker_file/ubuntu_xx_xx_cpxx
docker build -f Dockerfile_ubuntu_xx_xx_for_cpxx -t rknn-toolkit2:1.x.x-cpxx .

After created successfully, execute "docker images" command and the image of rknn-toolkit2

appears as follows:

REPOSITORY TAG IMAGE ID CREATED SIZE
rknn-toolkit2 1.x.x xxxxxxxxxxxx 1 hours ago 5.34GB

3. Run image:

Execute the following command to run the docker image. After running, it will enter the bash

environment.

docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb rknn-toolkit2:1.x.x-cpxx
/bin/bash

If you want to map your own code, you can add the "-v <host src folder>:<image dst folder>"

parameter, for example:

docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb -v
/your/rknn-toolkit2-1.x.x/examples:/examples rknn-toolkit2:1.x.x-cpxx /bin/bash

4. Run demo:

https://docs.docker.com/install/linux/docker-ce/ubuntu/

8

cd /examples/tflite/mobilenet_v1
python3 test.py

3.1.3 Install by the Docker Image

In docker/docker_full folder, there is Docker image that has been packaged for all development

requirements, Users only need to load the image and can directly use RKNN-toolkit2, detailed steps are

as follows:

1. Install Docker:

Please install Docker according to the official manual:

https://docs.docker.com/install/linux/docker-ce/ubuntu/

2. Load Docker image:

Execute the following command to load Docker image:

docker load --input rknn-toolkit2-1.x.x-cpxx-docker.tar.gz

After loading successfully, execute "docker images" command and the image of rknn-toolkit2

appears as follows:

REPOSITORY TAG IMAGE ID CREATED SIZE
rknn-toolkit2 1.x.x-cpxx xxxxxxxxxxxx 1 hours ago 5.89GB

3. Run image:

Execute the following command to run the docker image. After running, it will enter the bash

environment.

docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb rknn-toolkit2:1.x.x-cpxx
/bin/bash

If you want to map your own code, you can add the "-v <host src folder>:<image dst folder>"

parameter, for example:

https://docs.docker.com/install/linux/docker-ce/ubuntu/

9

docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb -v
/your/rknn-toolkit2-1.x.x/examples:/examples rknn-toolkit2:1.x.x-cpxx /bin/bash

4. Run demo:

cd /examples/tflite/mobilenet_v1
python3 test.py

10

3.2 Usage of RKNN-Toolkit2

Next, the use process of RKNN Toolkit2 under each use scenario will be given in detail.

3.2.1 Scenario 1: Inference for Simulation on PC

In this scenario, RKNN Toolkit2 runs on the PC, and runs the model through the simulator.

At this time, the model can only be a non-RKNN model, i.e. Caffe, TensorFlow, TensorFlow Lite,

ONNX, DarkNet, PyTorch model.

3.2.1.1 run the non-RKNN model

When running a non-RKNN model, the RKNN-Toolkit2 usage flow is shown below:

Start

Create RKNN object to initialize RKNN
SDK environment

Call config interface to set pre-processing
parameters of model

Call load_caffe, load_tensorflow,
load_tflite, load_onnx, load_darknet,
load_pytorch, load_mxnet interface to

load original Caffe, TensorFlow,
TensorFlow Lite, ONNX, Darknet, Pytorch

or MXNet model

Call build interface to build RKNN model

Call export_rknn
interface to export

RKNN model

Call inference interface to
perform inference with input
to get results

Call eval_perf interface to
evaluate performance of model to
get the running time of each layer
and total running time of model

Call init_runtime interface
to initialize the runtime

environment

End

Call release interface to release RKNN
object

Call eval_memory interface
to get memory useage when
model running.

11

Figure 1 Usage flow of RKNN-Toolkit2 when running a non-RKNN model on PC

Note:

1. The above steps should be performed in order.

2. The model exporting step marked in the blue box is not necessary. If you exported, you can use

load_rknn to load it later on.

3. The order of model inference, performance evaluation and memory evaluation steps marked in

red box is not fixed, it depends on the actual demand.

4. Only when the target hardware platform is Rockchip NPU, we can call eval_perf /

eval_memory interface.

3.2.2 Scenario 2: Run on Rockchip NPU connected to the PC.

Rockchip NPU platforms currently supported by RKNN Toolkit2 include RK3566 / RK3568 /

RK3588 / RV1103 / RV1106 / RK3562.

In this Scenario, In this scenario, RKNN Toolkit2 runs on the PC and connects to the NPU device

through the PC's USB. RKNN Toolkit2 transfers the RKNN model to the NPU device to run, and then

obtains the inference results, performance information, etc. from the NPU device.

First, we need to complete the following two steps:

1. Make sure the USB OTG of development board is connected to PC, call ‘adb devices’ or call

rknn.list_devices interface will show the device. More information about "list_devices" interface can see

Scction 3.5.15.

2. Refer to https://github.com/rockchip-linux/rknpu2/blob/master/rknn_server_proxy.md for

instructions to update the runtime library and rknn_server library of the development board, and ensure

that the rknn_server service has been started (most platforms need to be manually started through the

serial port).

3. "Target" parameter and "device_id" parameter need to be specified when calling "init_runtime"

interface to initialize the runtime environment, where "target" indicates the type of hardware, optional

12

values are "rk3566", "rk3568", "rk3588", "rv1103", "rv1106" and "rk3562". When multiple devices are

connected to PC, "device_id" parameter needs to be specified. It is a string which can be obtained by

calling "list_devices" interface, for example:

all device(s) with adb mode:
VD46C3KM6N

Runtime initialization code is as follows:

RK3566
ret = init_runtime(target='rk3366', device_id='VGEJY9PW7T')

RK3588
ret = init_runtime(target='rk3588', device_id='515e9b401c060c0b')

3.2.2.1 run the non-RKNN model

If the model is a non-RKNN model (Caffe, TensorFlow, TensorFlow Lite, ONNX, DarkNet,

PyTorch), the usage flow and precautions of RKNN-Toolkit2 are the same as the scenario 1(see Section

3.2.1.1).

3.2.2.2 run the RKNN model

When running an RKNN model, users do not need to set model pre-processing parameters, nor do

they need to build an RKNN model, the usage flow is shown in the following figure.

13

Call load_rknn interface to load RKNN
model

Call init_runtime interface to initialize the
runtime environment

Start

Create RKNN object to initialize RKNN
SDK environment

End

Call inference interface to
perform inference with

input to get results

Call eval_perf interface to evaluate
performance of model to get the

running time of each layer and total
running time of model

Call release interface to release RKNN
object

Call eval_memory interface
to get the memory usage

when model running.

Figure 2 Usage flow of RKNN-Toolkit2 when running an RKNN model on PC

Note:

1. The above steps should be performed in order.

2. The order of model inference, performance evaluation and memory evaluation steps marked in red

box is not fixed, it depends on the actual demand.

3. We can call inference / eval_perf / eval_memory only when the target is hardware platform.

4. The import method through load_rknn is only used for the use of hardware platform-related

functions, and functions such as accuracy_analysis cannot be used.

14

3.3 Hybrid Quantization

The quantization feature can ensure the accuracy of model based on improved model inference

speed. But for some models, the accuracy has dropped a bit. In order to better balance performance and

accuracy, we add new feature hybrid quantization. Users can decide which layers to quantize or not

manually, the quantization parameters also can been modified.

Note:

1. The examples/functions directory provides a hybrid quantization example named hybrid_quant.

Users can refer to this example for hybrid quantification practice.

3.3.1 Instructions of hybrid quantization

Currently, RKNN Toolkit2 has three kind of ways to use hybrid quantization:

1. Convert quantized layer to non-quantized (e.g. float16) layer. Due to the low non-quantized

computing power on the NPU, the inference speed will be reduced.

3.3.2 Hybrid quantization profile

When using the hybrid quantization feature, the first step is to generate a hybrid quantization profile,

which is briefly described in this section.

When the hybrid quantization interface hybrid_quantization_step1 is called, a configuration file of

{model_name}.quantization.cfg is generated in the current directory. The configuration file format is as

follows:

custom_quantize_layers: {}
quantize_parameters:

Preprocessor/sub:0:
qtype: asymmetric_quantized
qmethod: layer
dtype: int8
min:
- -1.0
max:
- 1.0

15

scale:
- 0.00784313725490196
zero_point:
- 0
ori_min:
- -1.0
ori_max:
- 1.0

……

custom_quantize_layers is a dictionary of customized quantize layers, add the tensor names and

their corresponding quantized type (choose from float16 / int16) to be changed to customized quantize

layers. (int16 not supported yet)

Since version 1.4.2, the first step of hybrid quantization will give the layers that may improve the

accuracy according to certain rules, and specify the quantization method as float16. users can add or

delete based on the actual needs to balance the accuracy and speed of the model.

quantize_parameters is the quantization parameter of each operand in the model, and each operand

is a dictionary. The key of each dictionary is tensor_name, the value of dictionary is quantization

parameter, if it is not quantized, the "dtype" value is float16.

3.3.3 Usage flow of hybrid quantization

When using the hybrid quantization function, it can be done in four steps.

Step1, load the original model and generate a quantize configuration file, a model structure file and a

model weight bias file. The specific interface call process is as follows:

16

Start

Create RKNN object to initialize RKNN

environment

Call config interface to set pre-processing

parameters of model

Call load_caffe / load_tensorflow /

load_tflite / load_onnx / load_darknet /

load_pytorch interface to load original Caffe

/ TensorFlow / TensorFlow Lite / ONNX /

DarkNet / PyTorch model

Call hybrid_quantization_step1 interface to

generate quantization

profile({model_name}.quantization.cfg),

temporary model file({model_name}.model),

data file({model_name}.data)

Call release interface to release RKNN object

End

Figure 3 call process of hybrid quantization step 1

Step 2, Modify the quantization configuration file generated in the first step.

 If some quantization layers is changed to a non-quantization layer, find the output operand of

layer that is not to be quantized, and add these operands name and float16 to

custom_quantize_layers, such as "<operands name>: float16".

Note: The quantization config file will give some suggestions for hybrid quantization since

version 1.4.2. This suggestions are for reference only.

Step 3, generate hybrid quantized RKNN model. The specific interface call flow is as follows:

17

Start

Create RKNN object to initialize RKNN

environment

Call hybrid_quantization_step2 interface to

build hybrid quantized RKNN model

Call export_rknn interface to export RKNN

model

Call release interface to release RKNN object

End

Figure 4 call process of hybrid quantization step 3

Step 4, use the RKNN model generated in the previous step to inference.

18

3.4 Example

The following is the sample code for loading TensorFlow Lite model (see the example/tflite/

mobilenet_v1 directory for details), if it is executed on PC, the RKNN model will run on the si

mulator.

import numpy as np
import cv2
from rknn.api import RKNN

def show_outputs(outputs):
output = outputs[0][0]
output_sorted = sorted(output, reverse=True)
top5_str = 'mobilenet_v1\n-----TOP 5-----\n'
for i in range(5):

value = output_sorted[i]
index = np.where(output == value)
for j in range(len(index)):

if (i + j) >= 5:
break

if value > 0:
topi = '{}: {}\n'.format(index[j], value)

else:
topi = '-1: 0.0\n'

top5_str += topi
print(top5_str)

if __name__ == '__main__':
Create RKNN object
rknn = RKNN(verbose=True)

Pre-process config
print('--> Config model')
rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128])
print('done')

Load model
print('--> Loading model')
ret = rknn.load_tflite(model='mobilenet_v1_1.0_224.tflite')
if ret != 0:

print('Load model failed!')
exit(ret)

print('done')

Build model
print('--> Building model')

19

ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
if ret != 0:

print('Build model failed!')
exit(ret)

print('done')

Export RKNN model
print('--> Export RKNN model')
ret = rknn.export_rknn('./mobilenet_v1.rknn')
if ret != 0:

print('Export rknn model failed!')
exit(ret)

print('done')

Set inputs
img = cv2.imread('./dog_224x224.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.expand_dims(img, 0)

Init runtime environment
print('--> Init runtime environment')
ret = rknn.init_runtime()
if ret != 0:

print('Init runtime environment failed!')
exit(ret)

print('done')

Inference
print('--> Running model')
outputs = rknn.inference(inputs=[img])
show_outputs(outputs)
print('done')

rknn.release()

Where dataset.txt is a text file containing the path of the test image. For example, if a picture of

dog_224x224.jpg in the example/tflite/mobilenet_v1 directory, then the corresponding content in

dataset.txt is as follows:

dog_224x224.jpg

When performing model inference, the result of this demo is as follows:

-----TOP 5-----
[156]: 0.93310546875
[155]: 0.0555419921875
[205 284]: 0.003704071044921875
[205 284]: 0.003704071044921875
-1: 0.0

20

3.5 RKNN-Toolkit2 API description

3.5.1 RKNN object initialization and release

The initialization/release function group consists of API interfaces to initialize and release the

RKNN object as needed. The RKNN() must be called before using all the API interfaces of

RKNN-Toolkit2, and call the release() method to release the object when task finished.

When the RKNN object is initing, the users can set verbose and verbose_file parameters, used to

show detailed log information of model loading, building and so on. The data type of verbose parameter

is bool. If the value of this parameter is set to True, the RKNN Toolkit2 will show detailed log

information on screen. The data type of verbose_file is string. If the value of this parameter is set to a file

path, the detailed log information will be written to this file (the verbose also need be set to True).

The sample code is as follows:

Show the detailed log information on screen, and saved to
mobilenet_build.log
rknn = RKNN(verbose=True, verbose_file='./mobilenet_build.log')

Only show the detailed log information on screen.
rknn = RKNN(verbose=True)

…

rknn.release()

3.5.2 RKNN model configuration

Before the RKNN model is built, the model needs to be configured first through the config interface.

API config

Description Set model convert parameters.

mean_values: The mean values of the input. The parameter format is a list. The list

contains one or more mean sublists. The multi-input model corresponds to multiple

sublists. The length of each sublist is consistent with the number of channels of the input.

For example, if the parameter is [[128,128,128]], it means an input subtract 128 from the

21

values of the three channels.

The default value is None, means all means is zero.

std_values: The normalized value of the input. The parameter format is a list. The list

contains one or more normalized value sublists. The multi-input model corresponds to

multiple sublists. The length of each sublist is consistent with the number of channels of

the input. For example, if the parameter is [[128,128,128]], it means the value of the three

channels of an input minus the average value and then divide by 128.

The default value is None, means all stds is one.

quant_img_RGB2BGR: Indicates whether the RGB2BGR operation needs to be done

first when loading the quantized image. If there are multiple inputs, the corresponding

parameters for each input is split with ‘,’, such as [True, True, False]. The default value is

False.

This configuration is generally used on the Caffe model. Most of the Caffe model training

will perform RGB2BGR conversion on the dataset image firstly. At this time, the

configuration needs to be set to True.

In addition, this configuration is only valid for the quantized image format of

jpg/jpeg/png/bmp. This configuration is ignored when the npy format is read. Therefore,

when the model input is BGR, npy also needs to be in BGR format.

This configuration is only used to read the quantize image in the quantization stage

(build interface) or in quantitative accuracy analysis (accuracy_analysis interface),

and will not be recorded in the final RKNN model. Therefore, if the input of the

model is BGR, you need to ensure that the imported image data is also in BGR

format before calling the inference of the toolkit or the run function of the C-API.

quantized_dtype: Quantization type, the quantization types currently supported are

asymmetric_quantized-8, asymmetric_quantized-16(asymmetric_quantized-16 is not

supported yet). The default value is asymmetric_quantized-8.

22

quantized_algorithm: The quantization algorithm used when calcaulating the

quantization parameters of each layer. Currently support: normal, mmse and

kl_divergence. The default value is normal.

The characteristic of normal quantization algorithm is fast. The recommended

quantization data is generally about 20-100 pieces. with more data, the accuracy may not

be further improved.

The mmse quantization algorithm is slower due to the violent iteration method, but usually

has higher accuracy than normal. The recommended quantization data is generally about

20-50 pieces. Users can also increase or decrease the amount of data appropriately

according to the length of the quantization time.

The kl_divergence algorithm will take more time than normal, but will be much less than

mmse. In some scenarios(when the feature distribution is uneven), better improvement

effects can be obtained by “kl_divergence”. the recommended quantization data is

generally about 20-100 pieces.

quantized_method: Currently support layer or channel. The default value is channel.

layer: each weight has only one set of quantization parameters.

channel: each channel of weight has its own set of quantization parameters. usually the

channel will be more accurate than the layer.

float_dtype: Used to specify the data type of floating in the non-quantized case, the data

types currently supported are float16. The default value is float16.

optimization_level: Model optimization level. The default value is 3.

By modifying the model optimization level, you can turn off some or all of the

optimization rules used in the model conversion process. The default value of this

parameter is 3, and all optimization options are turned on. When the value is 2 or 1, turn

off some optimization options that may affect the accuracy of some models. Turn off all

optimization options when the value is 0.

23

target_platform: Specify which target chip platform the RKNN model is based on.

"rk3566", "rk3568", "rk3588", "rv1103", "rv1106" and "rk3562" are currently supported.

The default value is None.

custom_string: Add custom string information to RKNN model, then can query the

information at runtime. The default value is None.

remove_weight: Remove the weights to generate a RKNN slave model that can share

weights with the full weighted RKNN model to reduce memory consumption. The default

value is False.

compress_weight: Compress the weights of the model, which can reduce the size of

RKNN model. The default value is False.

single_core_mode: Whether to generate only single-core model, which can reduce the

size and memory consumption of the RKNN model. The default value is False. only valid

for RK3588. The default value is False.

model_pruning: Pruning the model that can reduce the size and calculation of the

transformed RKNN model for models with sparse weights. The default value is False.

op_target：Used to specify the target of each operation (NPU/CPU/GPU etc.), the format

is {'op0_output_name':'cpu', 'op1_output_name':'cpu', ...}, The default value is None.

'op0_output_name' and 'op1_output_name' are the output tensor names of the

corresponding OP, which can be obtained from the returned results of the

accuracy_analysis feature. 'cpu' and 'npu' indicate that the execution target of the OP

corresponding to this tensor is CPU or NPU. The currently available options are: 'cpu' /

'npu' / 'gpu' / 'auto', and 'auto' is for automatically selecting the execution target.

dynamic_input：Simulate the function of dynamic input according to multiple sets of

input shapes specified by the user. the format is [[input0_shapeA, input1_shapeA, ...],

[input0_shapeB, input1_shapeB, ...], ...].

The default value is None, experimental.

24

For example, the input shape of the original model is [1,3,224,224] or [1,3,height,width] or

[1,3,-1,-1], but the model for deploy needs to support 3 input shapes: [1,3,224,224],

[1,3,192,192] and [1,3,160,160], you can set dynamic_input=[[[1,3,224,224]],

[[1,3,192,192]], [[1,3160,160]]]. When converting to the RKNN model for inference, the

input data corresponding to the shape needs to be passed in.

Note:

1. If the input shape of the original model is static, an error may be reported because

the shape cannot be launched normally.

2. If the input shape of the original model is dynamic, only the dynamic axes can set

different values.

Return

Value

None.

The sample code is as follows:

model config
rknn.config(mean_values=[[103.94, 116.78, 123.68]],

std_values=[[58.82, 58.82, 58.82]],
quant_img_RGB2BGR=True,
target_platform='rk3566')

3.5.3 Loading model

RKNN-Toolkit2 currently supports load non-RKNN models of Caffe, TensorFlow, TensorFlow Lite,

ONNX, DarkNet, PyTorch. There are different calling interfaces when loading models, the loading

interfaces are described in detail below.

3.5.3.1 Loading Caffe model

API load_caffe

25

Description Load Caffe model.

Parameter model: The path of Caffe model structure file (suffixed with ".prototxt").

blobs: The path of Caffe model binary data file (suffixed with ".caffemodel").

input_name: When the caffe model has multiple inputs, you can specify the order of the

input layer names through this parameter, such as ['input1','input2','input3'],note that the

name needs to be consistent with the model input name；The default value is None, means

the sequence is automatically given by the caffe model file (file suffix with .prototxt).

Return

Value

0: Import successfully.

-1: Import failed.

The sample code is as follows:

Load the mobilenet_v2 Caffe model in the current path
ret = rknn.load_caffe(model='./mobilenet_v2.prototxt',

blobs='./mobilenet_v2.caffemodel')

3.5.3.2 Loading TensorFlow model

API load_tensorflow

Description Load TensorFlow model.

Parameter tf_pb: The path of TensorFlow model file (suffixed with ".pb").

inputs: The input node (operand name) of model, input with multiple nodes is supported

now. All the input node string are placed in a list.

input_size_list: The shapes of input node, all the input shape are placed in a list. As in the

example of ssd_mobilenet_v1 model, the input_size_list parameter should be set to

[[1,300,300,3]].

outputs: The output node (operand name) of model, output with multiple nodes is

supported now. All the output nodes are placed in a list.

26

input_is_nchw: Whether the input layout of the model is already NCHW. The default

value is False, means the default input layout is NHWC.

Return

value

0: Import successfully.

-1: Import failed.

The sample code is as follows:

Load ssd_mobilenet_v1_coco_2017_11_17 TF model in the current path
ret = rknn.load_tensorflow(

tf_pb='./ssd_mobilenet_v1_coco_2017_11_17.pb',
inputs=['Preprocessor/sub'],
outputs=['concat', 'concat_1'],
input_size_list=[[300, 300, 3]])

3.5.3.3 Loading TensorFlow Lite model

API load_tflite

Description Load TensorFlow Lite model.

Parameter model: The path of TensorFlow Lite model file (suffixed with ".tflite").

input_is_nchw: Whether the input layout of the model is already NCHW. The default

value is False, that is, the default input layout is NHWC.

Return

Value

0: Import successfully.

-1: Import failed.

The sample code is as follows:

Load the mobilenet_v1 TF-Lite model in the current path
ret = rknn.load_tflite(model = './mobilenet_v1.tflite')

27

3.5.3.4 Loading ONNX model

API load_onnx

Description Load ONNX model.

Parameter model: The path of ONNX model file (suffixed with ".onnx").

inputs: The input node (operand name) of model, input with multiple nodes is supported

now. All the input node string are placed in a list. The default value is None, means get

from model.

input_size_list: The shapes of input node, all the input shape are placed in a list. If inputs

set, the input_size_list should be set also. defualt is None.

input_initial_val: Set the initial value of the model input, the format is ndarray list.The

default value is None.

Mainly used to fix some input as constant, For the input that does not need to be fix as a

constant, it can be set to None, such as [None, np.array([1])].

outputs: The output node (operand name) of model, output with multiple nodes is

supported now. All the output nodes are placed in a list. The default value is None, means

get from model.

Return

Value

0: Import successfully.

-1: Import failed.

The sample code is as follows:

Load the arcface onnx model in the current path
ret = rknn.load_onnx(model = './arcface.onnx')

3.5.3.5 Loading DarkNet model

API load_darknet

28

Description Load DarkNet model.

Parameter model: The path of DarkNet model structure file (suffixed with ".cfg").

weight: The path of weight file (suffixed with ".weight").

Return

Value

0: Import successfully.

-1: Import failed.

The sample code is as follows:

Load the yolov3-tiny DarkNet model in the current path
ret = rknn.load_darknet(model = './yolov3-tiny.cfg',

weight= './yolov3.weights')

3.5.3.6 Loading PyTorch model

API load_pytorch

Description Load PyTorch model.

Support the Quantization Aware Training (QAT) model, but need update torch version to

'1.9.0' or higher.

Parameter model: The path of PyTorch model structure file (suffixed with ".pt"), and need a model in

the torchscript format.

input_size_list: The shapes of input node, all the input shape are placed in a list.

Return

Value

0: Import successfully.

-1: Import failed.

The sample code is as follows:

Load the PyTorch model resnet18 in the current path
ret = rknn. load_pytorch(model = './resnet18.pt',

input_size_list=[[1,3,224,224]])

29

3.5.4 Building RKNN model

API build

Description Build corresponding RKNN model according to imported model.

Parameter do_quantization: Whether to quantize the model. The default value is True.

dataset: A input dataset for rectifying quantization parameters. Currently supports text file

format, the user can place the path of picture(jpg or png) or npy file which is used for

rectification. A file path for each line. Such as:

a.jpg

b.jpg

or

a.npy

b.npy

If there are multiple inputs, the corresponding files are divided by space. Such as:

a.jpg a2.jpg

b.jpg b2.jpg

or

a.npy a2.npy

b.npy b2.npy

Note: It is generally recommended to select the quantization image which is consistent

with the prediction scene.

rknn_batch_size: Use to adjust batch size of input. default is None.

If greater than 1, NPU can inference multiple frames of input image or input data in one

inference. For example, original input of MobileNet is [1, 224, 224, 3], output shape is [1,

1001]. When rknn_batch_size is set to 4, the input shape of MobileNet becomes [4, 224,

224, 3], output shape becomes [4, 1001].

Note:

30

1. The adjustment of rknn_batch_size does not improve the performance of the

general model on the NPU, but it will significantly increase memory

consumption and increase the delay of single frame.

2. The adjustment of rknn_batch_size can reduce the consumption of the

ultra-small model on the CPU and improve the average frame rate of the

ultra-small model. (Applicable to the model is too small, CPU overhead is

greater than the NPU overhead)

3. The value of rknn_batch_size is recommended to be less than 32, to avoid the

memory usage is too large and the reasoning fails.

4. After the rknn_batch_size is modified, the shape of input and output will be

modified. So the inputs of inference should be set to correct size. It`s also needed

to process the returned outputs on post processing.

Return

value

0: Build successfully.

-1: Build failed.

The sample code is as follows:

Build and quantize RKNN model
ret = rknn.build(do_quantization=True, dataset='./dataset.txt')

3.5.5 Export RKNN model

The RKNN model built by ‘build’ interface can be saved as a file, it can used to model deployment.

API export_rknn

Description Save RKNN model in the specified file (suffixed with ".rknn").

Parameter export_path: The path of generated RKNN model file.

cpp_gen_cfg: Whether generate C++ deployment example.. The default value is False.

Generated files - At the same folder path as RKNN model, the generated files include a

31

folder named "rknn_deploy_demo" and an instruction document.

Supported functions:

- Timing for each CAPI interface during model inference verification

- Cosine accuracy verification for inference results

- Support for regular API interfaces

- Support for image/npy inputs.

NOTE: Not support on RV1103/RV1106.

Return

Value

0: Export successfully.

-1: Export failed.

The sample code is as follows:

save the built RKNN model as a mobilenet_v1.rknn file in the current # path
ret = rknn.export_rknn(export_path = './mobilenet_v1.rknn')

3.5.6 Loading RKNN model

API load_rknn

Description Load RKNN model.

The loading model is limited to connecting to the NPU hardware for inference or

performance data acquisition. It can not be used for simulator or accuracy analysis.

Parameter path: The path of RKNN model file.

Return

Value

0: Load successfully.

-1: Load failed.

The sample code is as follows:

Load the mobilenet_v1 RKNN model in the current path
ret = rknn.load_rknn(path='./mobilenet_v1.rknn')

32

3.5.7 Initialize the runtime environment

Before inference or performance evaluation, the runtime environment must be initialized. This

interface determines the type of runtime (hardware platform or software simulator).

API init_runtime

Description Initialize the runtime environment.

Parameter target: Target hardware platform, now supports "rk3566", "rk3568", "rk3588", "rv1103",

"rv1106" and "rk3562". The default value is "None", means model runs on simulator.

Note: When target is set to None, the build or hybrid_quantization interface needs to be

called first.

device_id: Device identity number, if multiple devices are connected to PC, this parameter

needs to be specified which can be obtained by calling "list_devices" interface. The default

value is None.

perf_debug: Debug mode option for performance evaluation. In debug mode, the running

time of each layer can be obtained, otherwise, only the total running time of model can be

given. The default value is False.

eval_mem: Whether enter memory evaluation mode. If set True, the eval_memory

interface can be called later to fetch memory usage of model running. The default value is

False.

async_mode: Whether to use asynchronous mode. The default value is False.

When calling the inference interface, it involves setting the input picture, model running,

and fetching the inference result. If the asynchronous mode is enabled, setting the input of

the current frame will be performed simultaneously with the inference of the previous

frame, so in addition to the first frame, each subsequent frame can hide the setting input

time, thereby improving performance. In asynchronous mode, the inference result returned

each time is the previous frame. (Not Supported yet)

33

core_mask: Sets the NPU cores at runtime. The supported platform is RK3588, and the

supported configurations are as follows:

RKNN.NPU_CORE_AUTO: Indicates the automatic scheduling model, which

automatically runs on the currently idle NPU core.

RKNN.NPU_CORE_0: Indicates running on the NPU0 core.

RKNN.NPU_CORE_1: Indicates running on the NPU1 core.

RKNN.NPU_CORE_2: Indicates running on the NPU2 core.

RKNN.NPU_CORE_0_1: Indicates running on NPU0 and NPU1 cores at the same time.

RKNN.NPU_CORE_0_1_2: Indicates running on NPU0, NPU1, NPU2 cores at the same

time.

The default value is "RKNN.NPU_CORE_AUTO".

Return

Value

0: Initialize the runtime environment successfully.

-1: Initialize the runtime environment failed.

The sample code is as follows:

Initialize the runtime environment
ret = rknn.init_runtime(target='rk3566')
if ret != 0:

print('Init runtime environment failed!')
exit(ret)

3.5.8 Inference with RKNN model

This interface kicks off the RKNN model inference and get the result of inference.

API inference

Description Use the model to perform inference with specified input and get the inference result.

Detailed scenarios are as follows:

1. If RKNN Toolkit2 is running on PC and the target is set to Rockchip NPU when

34

initializing the runtime environment, the inference of model is performed on the specified

hardware platform.

2. If RKNN Toolkit2 is running on PC and the target is not set when initializing the

runtime environment, the inference of model is performed on the simulator.

Parameter inputs: Inputs list to be inferred, The object type is ndarray.

data_format: The layout list of input data. "nchw" or "nhwc" , only valid for 4-dims

input. The default value is None, means all inputs layout is "nhwc".

inputs_pass_through: The pass_through flag. The default value is None, means all input

is not pass through.

In non-pass_through mode, the tool will reduce the mean, divide the variance, etc. before

the input is passed to the NPU driver; in pass_through mode, these operations will not be

performed.

The value of this parameter is an list. For example, to pass input0 and not input1, the value

of this parameter is [1, 0].

Return

Value

results: The result of inference, the object type is ndarray list.

The sample code is as follows:

For classification model, such as mobilenet_v1, the code is as follows (refer to

example/tfilte/mobilenet_v1 for the complete code):

Preform inference for a picture with a model and get a top-5 result
……
outputs = rknn.inference(inputs=[img])
show_outputs(outputs)
……

The result of top-5 is as follows:

-----TOP 5-----
[156]: 0.93310546875

35

[155]: 0.0555419921875
[205 284]: 0.003704071044921875
[205 284]: 0.003704071044921875

For object detection model, such as ssd_mobilenet_v1, the code is as follows (refer to

example/tensorflow/ssd_mobilenet_v1 for the complete code):

Perform inference for a picture with a model and get the result of object
detection
……
outputs = rknn.inference(inputs=[image])
……

After the inference result is post-processed, the final output is shown in the following picture (the

color of the object border is randomly generated, so the border color obtained will be different each

time):

Figure 3 ssd_mobilenet_v1 inference result

36

3.5.9 Evaluate model performance

API eval_perf

Description Evaluate model performance.

Model must run on RK3566 / RK3568 / RK3588 / RV1103 / RV1106 / RK3562 which

connected to PC.If setting perf_debug to False when initializing runtime environment, the

performance information is obtained from hardware, which only contains the total running

time of model. And if the perf_debug is set to True, the running time of each layer will

also be captured in detail.

is_print: Whether to print performance information. The default value is True.

Return

Value

perf_result: Performance information (strings).

The sample code is as follows:

Evaluate model performance
……
perf_detail = rknn.eval_perf()
……

3.5.10 Evaluating memory usage

API eval_memory

Description Fetch memory usage when model is running on hardware platform.

Model must run on RK3566 / RK3568 / RK3588 / RV1103 / RV1106 / RK3562 which

connected to PC.

Parameter is_print: Whether to print memory evaluation results in the canonical format. The default

value is True.

Return

Value

memory_detail: Detail information of memory usage. Data format is dictionary.

Data shows as below:

{

37

'total_weight_allocation': 4312608
'total_internal_allocation': 1756160,
'total_model_allocation': 6068768

}

 The ‘total_weight_allocation’ represents the memory footprint of the weights in the

model.

 The ‘total_internal_allocation’ represents the memory usage of the internal tensor in

the model.

 The ‘total_model_allocation’ represents the memory footprint of the model, that is,

the sum of the weight and the memory footprint of the internal tensor.

The sample code is as follows:

eval memory usage
……
memory_detail = rknn.eval_memory()
……

For tflite/mobilenet_v1 in examples directory, the memory usage when model running on RK3566 is

printed as follows:

===
Memory Profile Info Dump

===
NPU model memory detail(bytes):

Total Weight Memory: 4.11 MiB
Total Internal Tensor Memory: 1.67 MiB
Total Memory: 5.79 MiB

INFO: When evaluating memory usage, we need consider
the size of model, current model size is: 4.33 MiB
===

3.5.11 Get SDK version

API get_sdk_version

Description Get API version and driver version of referenced SDK.

Note: Before we use this interface, we must load model and initialize runtime first. And

38

this API can only used on RK3566 / RK3568 / RK3588 / RV1103 / RV1106 / RK3562.

Parameter None.

Return

Value

sdk_version: API and driver version. Data type is string.

The sample code is as follows:

Get SDK version
……
sdk_version = rknn.get_sdk_version()
print(sdk_version)
……

The SDK version looks like below:

==
RKNN VERSION:

API: 1.2.5 (8e94e9e build: 2022-04-07 16:04:24)
DRV: rknn_server: 1.2.5 (8e94e9e build: 2022-04-07 16:12:20)

rknnrt: 1.2.6b0 (cbcc0a1eb@2022-04-13T09:41:25)
==

3.5.12 Hybrid Quantization

3.5.12.1 hybrid_quantization_step1

When using the hybrid quantization function, the main interface called in the first phase is

hybrid_quantization_step1, which is used to generate the temporary model file ({model_name}.model),

the data file ({model_name}.data), and the quantization configuration file ({model_name}.quantization.

cfg). Interface details are as follows:

API hybrid_quantization_step1

Description Corresponding temporary model files, data files, and quantization profiles are generated

39

according to the loaded original model.

Parameter dataset: See Building RKNN model.

rknn_batch_size: See Building RKNN model.

proposal: Generate hybrid quantization config suggestions. The default value is False.

proposal_dataset_size: The size of dataset used for proposal. The default value is 1.

Because the proposal function is time-consuming, so the default size is 1.

Return

Value

0: success.

-1: failure.

The sample code is as follows:

Call hybrid_quantization_step1 to generate quantization config
……
ret = rknn.hybrid_quantization_step1(dataset='./dataset.txt')
……

3.5.12.2 hybrid_quantization_step2

When using the hybrid quantization function, the primary interface for generating a hybrid quantized

RKNN model phase call is hybrid_quantization_step2. The interface details are as follows:

API hybrid_quantization_step2

Description The temporary model file, the data file, the quantization profile, and the correction data set

are received as inputs, and the hybrid quantized RKNN model is generated.

Parameter model_input: The temporary model file ({model_name}.model) path generated in the

hybrid_quantization_step1.

data_input: The model data file ({model_name}.data) path generated in the

hybrid_quantization_step1.

model_quantization_cfg: Path to the modified model quantization configuration file

({model_name}.quantization.cfg) generated by hybrid_quantization_step1.

Return 0: success.

40

Value -1: failure.

The sample code is as follows:

Call hybrid_quantization_step2 to generate hybrid quantized RKNN model
……
ret = rknn.hybrid_quantization_step2(

model_input='./ssd_mobilenet_v2.model',
data_input='./ssd_mobilenet_v2.data',
model_quantization_cfg='./ssd_mobilenet_v2.quantization.cfg')

……

3.5.13 Quantitative accuracy analysis

The function of this interface is inference with quantized model and generate outputs of each layers

for quantitative accuracy analysis.

API accuracy_analysis

Description Inference with quantized model and generate snapshot, that is dump tensor data of each

layers. It will dump a snapshot of both data types include fp32 & quant for calculate

quantitative error.

Note:

1. this interface can only be called after build or hybrid_quantization_step2.

2. If target is None and the original model is quantized model (QAT model), the

call will fail.

3. The quantization method used by this interface is consistent with the setting in

config.

Parameter inputs: the path list of image (jpg/png/bmp/npy).

output_dir: output directory, all snapshot data will stored here. The default value is

'./snapshot'.

If the target is not set, the following content will be output under ‘output_dir’:

41

 Directory simulator: Save the results of each layer on simulator when the entire

quantitative model is fully run (The output has been converted to float32).

 Directory golden: Save the results of each layer on simulator when the entire

floating-point model is completely run down.

 error_analysis.txt: Record the the cosine distance (entire_error and single_error)

between each layer result on simulator and the floating-point model on simulator

during the complete calculation of the quantized model. The different of

entire_error/single_error is the input of each layer is come from the quantization

model or floating-point model. See the error_analysis.txt file for more details.

If the target is set, more content will output under ‘output_dir’:

 Directory runtime: Save the results of each layer when the entire quantitative model is

fully run in NPU (The output has been converted to float32).

 error_analysis.txt: Record the the cosine distance (entire_error) between each layer

result on simulator and each layer on NPU during the complete calculation of the

quantized model additionally. See the error_analysis.txt file for more details.

target: Target hardware platform, now supports "rk3566", "rk3568", "rk3588", "rv1103" ,

"rv1106" and "rk3562". The default value is "None".

If target is set, the output of each layer of NPU will be obtained, and analyze it’s accuracy.

device_id: Device identity number, if multiple devices are connected to PC, this parameter

needs to be specified which can be obtained by calling "list_devices" interface. The default

value is "None ".

Return

Value

0: success.

-1: failure.

The sample code is as follows:

……

42

Create RKNN object
rknn = RKNN(verbose=True)

Pre-process config
print('--> Config model')
rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128])
print('done')

Load model
print('--> Loading model')
ret = rknn.load_tensorflow(tf_pb='mobilenet_v1.pb',

inputs=['input'],
outputs=['MobilenetV1/Logits/SpatialSqueeze'],
input_size_list=[[1, 224, 224, 3]])

if ret != 0:
print('Load model failed!')
exit(ret)

print('done')

Build model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset='dataset.txt')
if ret != 0:

print('build model failed!')
exit(ret)

print('done')

Accuracy analysis
print('--> Accuracy analysis')
Ret = rknn.accuracy_analysis(inputs=['./dog_224x224.jpg'])
if ret != 0:

print('Accuracy analysis failed!')
exit(ret)

print('done')

……

3.5.14 List Devices

API list_devices

Description List connected RK3566 / RK3568 / RK3588 / RV1103 / RV1106 / RK3562.

Note:

43

There are currently two device connection modes: ADB and NTB. Make sure their modes are

the same when connecting multiple devices.

Parameter None.

Return

Value

Return adb_devices list and ntb_devices list. If there are no devices connected to PC, it will

return two empty list.

The sample code is as follows:

……

rknn = RKNN()
rknn.list_devices()
rknn.release()

……

The devices list looks like below:

all device(s) with adb mode:
VD46C3KM6N

3.5.15 Export encrypted RKNN model

API export_encrypted_rknn_model

Description The common RKNN model is encrypted according to the encryption level specified by the

user.

Parameter input_model: The path of the RKNN model to be encrypted.

output_model: Save path of encrypted model. The default value is None, means the

{original_model_name}.crypt.rknn will be the save path of encrypted model.

crypt_level: Crypt level, currently, support level 1, 2 or 3. The default value is 1.

The higher the level, the higher the security and the more time-consuming decryption; on

the contrary, the lower the security, the faster the decryption.

44

Return

Value

0: Success.

-1: Failure.

The sample code is as follows:

……

rknn = RKNN()
ret = rknn.export_encrypted_rknn_model('test.rknn')
if ret != 0:

print('Encrypt RKNN model failed.')
exit(ret)

rknn.release()

……

45

3.6 Accuracy troubleshooting

The troubleshooting of model accuracy is generally conducted from two aspects, one is the

Simulator accuracy investigation, and the other is the runtime accuracy check on board-side. The correct

Simulator result is a prerequisite for correct board-side running. Therefore, it is recommended that users

prioritize the correct Simulator results when dealing with the accuracy of the RKNN model, and then

troubleshoot the board-side running accuracy.Therefore, we will give recommendations and solutions for

accuracy problem troubleshooting in terms of Simulator accuracy investigation and board-side accuracy

investigation during runtime.

In addition, the judgment of accuracy can simply use the cosine distance as the basic judgment, but

this is not equal to the final model accuracy, it is only used as a reference. And the judgment of accuracy

must be verified by running the data set finally. Of course, in the process of troubleshooting the following

accuracy problems, you can simply use the cosine distant as a basis for accuracy improving.

3.6.1 Simulator accuracy troubleshooting

The correctness of the Simulator results is a prerequisite for the correct inference on board-side, so it

is necessary to ensure that the simulator results is correct on the PC-side. Rknn-toolkit2 provides the

choice of whether the mode is quantified, so this chapter analyzes the accuracy of the “fp16 model” and

the “quantized model” respectively. Because the correct result of the “fp16 model” is the prerequisite for

the accuracy of the “quantized model”, when there is a problem with the accuracy of the “quantized

model”, it is generally recommended that users first verify the correctness of the “fp16 model”. The

troubleshooting strategies for the “fp16 model” and the “quantized model” will be described in detail

below.

3.6.1.1 Troubleshooting the accuracy of the “fp16 model”

The correct result of the “fp16 model” is a prerequisite to ensure the accuracy of the subsequent

“quantized model”. The user only needs to set the do_quantization parameter to False when using the

46

build interface of RKNN to convert the original model to the “fp16 model”. if the output result of “fp16

model” is wrong, you need to perform the following troubleshooting:

1) Configuration issues

The configuration of the model is mainly concentrated in the config interface of RKNN. And

there are a few configuration in other RKNN APIs. But not every configuration will cause the

accuracy problems, mainly the parameters that cause the accuracy problems of the “fp16 model” as

follows:

mean_values / std_values: The normalized parameters of the model, must ensure that they are

the same as the parameters used in the original model.

input_size_list: The input node shape information of load_tensorflow / load_pytorch, if the

configurations is wrong, it will also lead the wrong inference results.

inputs / outputs: the name of the input and output nodes of load_tensorflow. If the

configuration is wrong, it will also lead the wrong inference results.

parameters of inference interface: The input parameters of RKNN's inference interface,

mainly including inputs and data_format. Generally, in the python environment, the image data is

read through cv2.imread. At this time, it should be noted that the image format read by cv2.imread is

BGR. If the input of the original model is BGR (such as most caffe models), Then you can directly

transfer the image data to the inference interface of RKNN for inference; and if the input of the

original model is RGB, you also need to call cv2.cvtColor(img, cv2.COLOR_BGR2RGB) to

convert the image data to RGB, and then pass it to the inference interface of RKNN inference. In

addition, the layout of the image data read by cv2.imread is NHWC, because the default value of

data_format is NHWC, so there is no need to set the data_format parameter. If the input data of the

model is not read through cv2.imread, the user must clearly know the layout of the input data and set

the correct data_format parameter, if it is image data, ensure that its RGB sequence is consistent

with the input RGB sequence of the model.

The inspection of parameter configuration is a very important, and it is the main reason why

47

many users have wrong output results of the "fp16 model". Specific steps are as follows:

a. Use the original model to perform inference under the original model's inference

framework. For example, the caffe model uses caffe_bvlc or opencv_caffe for inference,

the pytorch model uses the pytorch inference framework for inference, pb and tflite use

tensorflow for inference, and onnx uses onnxruntime for inference. etc., and then save the

inference result.

b. Use the original model to perform inference under the inference framework of

rknn-toolkit2. You need to use the same input data as in the previous step, and set the

inference mode of fp16 (do_quantization of RKNN's build is set to False), and target

parameter of init_runtime should not be configured or set to None. At this time, the

simulator inside rknn-toolkit2 is used for inference, and the result of the inference is also

saved.

c. Comparing the results of the two inferences, if the results are more consistent (cosine

distance can be used to judge the consistency), it means that there is no problem with the

above configuration.

d. If the results are inconsistent, check whether the above parameters are correct.

If it is confirmed that the above parameter configuration is correct, and the results are still

inconsistent, it may be an internal bugs on the emulation-side.

2) Internal bugs on the emulation-side

This chapter may be related to the internal bug of the Simulator, but the probability of

occurrence is very low. Generally, it is recommended that users use the following two methods to

troubleshoot.

One is to set the verbose parameter to 'Debug' when constructing the RKNN object, it will turn

on the debug mode of rknn-toolkit2, and output the accuracy check log during the construction of

the RKNN model, according to the result of "check results" in the output log (Cosine similarity and

48

Euclidean distance), you can determine which step has the problem. If the problem is determined, it

is best to provide the model and log that reproduce the result to the Rockchip NPU team for analysis

and solution. This method uses the interface provided by rknn-toolkit2 for error checking, and is

generally suitable for quickly locating the problem. If there is no related "check results" log output

or the problem still cannot be located, the next method can also be used.

The prerequisite of the other method is that the user can obtain the ground truth of the output of

each layer of the original model under the original framework. At this time, the accuracy analysis

interface of RKNN can be used to dump the ‘golden’ result of each layer of the floating-point model,

and the cosine similarity is compared with the output results of each layer of the model under the

original framework. If the ‘golden’ result is not aligned with the output result of the first layer of the

model under the original framework (generally it is considered that the cosine similarity is less than

0.99 there is a little inconsistency, and it is almost considered that the result of this layer is wrong if

the cosine similarity is lower than 0.98), it may still be the previous parameter configuration If there

is an error, you need to go back to the previous step for re-checking. If the output results of the first

layer are consistent, but the middle layer or the final results are inconsistent, it may be caused by a

Simulator implementation bug. At this point, the user can locate the layer where the inconsistency

started, and can intercept the model around this layer, and provide the reproduction model to the

Rockchip NPU team for analysis and solution.

3.6.1.2 Troubleshooting the accuracy of the “quantized model”

After the accuracy of the "fp16 model" is verified, the error of the "fp16 model" is eliminated, the

model can be quantified, and the accuracy of the "quantized model" can be further analyzed. If you

encounter accuracy problems in the "quantized model", the investigation will be conducted mainly from

the following aspects:

49

3.6.1.2.1 Configuration issues

Similar to the configuration of the "fp16 model", configuration errors can also cause the accuracy of

the "quantized model". On the basis of ensuring the correct configuration of the "fp16 model", the

following parameter configurations should still be checked.

quantized_dtype: The choice of quantization type. The accuracy of different quantization types is

very different, and there is also a big difference in runtime performance. Generally, a compromise

quantization type, such as asymmetric_quantized-8, is selected. If asymmetric_quantized-4 is selected,

the best runtime performance can be achieved, but the accuracy is also the worst, so it is only suitable for

a few models that are not sensitive to 4-bit quantization. If asymmetric_quantized-16 is selected, the

accuracy close to the original model can be achieved, but the runtime performance will be relatively poor,

so it is only suitable for use in scenarios that are not sensitive to runtime performance but require very

high accuracy. However, because generally in the NPU, 16-bit quantization and non-quantization (float16)

have little difference in computing performance, it is recommended to choose fp16 (do_quantization of

RKNN's build interface is set to False) instead of 16-bit quantization. (The asymmetric_quantized-4 /

asymmetric_quantized-16 is not supported yet)

quant_img_RGB2BGR: Indicates whether RGB2BGR needs to be performed first when loading

the quantized image. It is generally used for the caffe model. For more detailed information, please refer

to the quant_img_RGB2BGR parameter description. This parameter configuration error will also cause a

significant decrease in quantization accuracy.

dataset: The configuration of quantitative correction set of RKNN's build interface. If you select a

calibration set that is not consistent with the actual deployment scenario, the accuracy may be reduced, or

too many or too few calibration sets will affect the accuracy (generally choose 50 to 200 sheets).

To check the parameter configuration of the "quantified model" specifically, you can generally

follow the steps below:

1) Directly perform "quantized model" inference, and then check the result of the inference and

compare it with the result of the original model in the original inference framework. If the

50

result is not very different, it can be considered that the quantized_dtype,

quant_img_RGB2BGR and dataset parameters are basically correct.

2) If the result is still very different:

a. If quantized_dtype is configured as a 4-bit algorithm, you can modify quantized_dtype to

a higher-bit quantization algorithm.

b. If the input image format of the original model is BGR (more common in caffe models),

you can modify quant_img_RGB2BGR to True at this time. In fact, the RGB sequence of

the input data can be known from the processing code of the input data in the accuracy

verification step of the previous "fp16 model".

c. You can use an image for quantization (leave only one line in dataset.txt), and use this

image for inference. If the accuracy of a single image is improved more at this time, it

means that the previously used quantization correction set is not well selected, and you

can reselect pictures that are more consistent with the deployment scene.

d. If only one image is used for quantization (only one line is left in dataset.txt), you can try

to use more images for quantization, which can be increased to about 50~200.

After the above investigation, the accuracy of some models may already meet the requirements, and

some models may not be accurate enough, you can try the methods in the following chapters (change the

quantization method). But there should not be a situation where the quantized result is completely wrong,

if there is a completely wrong situation, please recheck the above configuration.

3.6.1.2.2 Quantitative methods issue

Some models themselves are not friendly to quantization. At this time, you can try to switch between

different quantization methods and quantization algorithms. At present, there are two main quantization

methods, namely Per-Layer / Per-Channel, corresponding to the quantized_method parameter in RKNN's

config interface, and the quantization algorithm is mainly divided into two types, namely Normal /

MMSE, corresponding to RKNN's config interface quantized_algorithm parameter in RKNN’s config

51

interface. Steps as follows:

1) If the Per-Layer quantization method was originally used, it can be changed to the Per-Channel

quantization method. In general, the accuracy of the Per-Channel quantization method is much

higher than that of the Per-Layer quantization method, but it may be brings a slight decrease in

execution efficiency (negligible).

2) If the quantization method has been changed to Per-Channel, but the accuracy still cannot meet

the requirements, the quantization algorithm can be changed from Normal to MMSE at this

time. This method will greatly increase the quantization time, but will bring better accuracy

than Normal, and it will not affect the performance of the runtime.

If the accuracy is still low after using the above method, it may be that some Ops of the model are

not friendly to the existing quantization algorithm, and the accuracy will drop more after quantization.

For example, when the weight distribution of Conv is very uneven, you can consider using hybrid

quantization to further improve the accuracy of the model. Hybrid quantization can allow different OPs in

the model to use different quantization types. Specific steps are as follows:

1) First use the accuracy analysis interface to analyze the accuracy and find the layer that causes

the accuracy to decrease.

2) Use the hybrid quantization method, and write the name of the output tensor of the suspected

layer into the hybrid quantization configuration file.

3) Complete the steps of hybrid quantification and test the accuracy (You can use the accuracy

analysis interface to observe the accuracy changes).

Generally, after hybrid quantization, the accuracy of the model can be improved. If the improvement

is not obvious or not enough, you can try to hybrid more layers, but at the same time it will also reduce

the runtime speed, so the hybrid quantization requires users weigh the accuracy and speed by themselves.

There is also a special way that when the Op with reduced accuracy is in the last layer, you can also

choose to run the Op in post-processing, which will also effectively avoid the accuracy problem of this

52

layer.

So far, after investigating the above reasons, we can basically obtain a quantized model with better

accuracy, and the accuracy problem investigation on the Simulator-side is basically completed.

3.6.2 Runtime accuracy troubleshooting

After the accuracy verification of the "fp16 model" and the "quantized model" on the Simulator side,

the quantization accuracy on the Simulator side should generally be able to meet the needs of the

application, but users may often encounter the problem that the quantization accuracy on the Simulator

side is not bad, but when the inference test is performed on the board through RKNN's C API

programming, they find that the accuracy is insufficient or not at all correct. There are generally two

reasons for this kind of problem. One is caused by the code itself that calls RKNN's C API programming,

such as incorrect input data, incorrect runtime parameter configuration, or post-processing code error, etc.;

the other is caused by runtime bugs on board-side. When encountering this kind of problem, we can first

troubleshoot the runtime problem of the board-side through the following steps:

1) In the case of configuring the connecting board debugging environment (the environment

configuration method is detailed in the RKNN C API release package), use rknn-toolkit2 to

convert the RKNN model and set the target parameter of init_runtime, such as target='rk3566' ,

And connect the board to the PC via USB (refer to chapter 3.2.2), and then perform the

inference with board connection and check whether the inference result is correct (Because the

Simulator does not strictly simulate the NPU hardware, so the result may not be completely

consistent with the Simulator).

2) If the inference result in step 1 differs greatly from the Simulator result, it can be preliminarily

determined that there is a bug in the runtime when running the model on the board-side. At this

time, the accuracy analysis interface can be used to check the accuracy of the runtime side, just

set the target parameter of accuracy_analysis, such as target=’rk3566’, after the

accuracy_analysis is called, the accuracy analysis results of each layer will be output. If there is

53

a significant difference between the board-side runtime result and the quantized true value of

the Simulator, the analysis result and the reproduced model can be fed back to the Rockchip

NPU team for repair.

If there is no problem with the above verification, the problem lies in the C/C++ code that the user

calls RKNN's C API for programming. At this time, the user needs to carefully check whether the

configuration of RKNN's C API is configured correctly, and whether the pre-processing and

post-processing processes of the model are correct (need to be exactly the same as the process on the

Simulator side). For the use and configuration of RKNN's C API, please refer to the relevant rknn_api

documentation.

	1Overview
	1.1Main function description
	1.2Applicable chip model
	1.3Applicable Operating System
	1.4Applicable Deep Learning Framework

	2Requirements/Dependencies
	3User Guide
	3.1Installation
	3.1.1Install by pip command
	3.1.2Install by the Dockerfile
	3.1.3Install by the Docker Image

	3.2Usage of RKNN-Toolkit2
	3.2.1Scenario 1: Inference for Simulation on PC
	3.2.1.1run the non-RKNN model

	3.2.2Scenario 2: Run on Rockchip NPU connected to the P
	3.2.2.1run the non-RKNN model
	3.2.2.2run the RKNN model

	3.3Hybrid Quantization
	3.3.1Instructions of hybrid quantization
	3.3.2Hybrid quantization profile
	3.3.3Usage flow of hybrid quantization

	3.4Example
	3.5RKNN-Toolkit2 API description
	3.5.1RKNN object initialization and release
	3.5.2RKNN model configuration
	3.5.3Loading model
	3.5.3.1Loading Caffe model
	3.5.3.2Loading TensorFlow model
	3.5.3.3Loading TensorFlow Lite model
	3.5.3.4Loading ONNX model
	3.5.3.5Loading DarkNet model
	3.5.3.6Loading PyTorch model

	3.5.4Building RKNN model
	3.5.5Export RKNN model
	3.5.6Loading RKNN model
	3.5.7Initialize the runtime environment
	3.5.8Inference with RKNN model
	3.5.9Evaluate model performance
	3.5.10Evaluating memory usage
	3.5.11Get SDK version
	3.5.12Hybrid Quantization
	3.5.12.1hybrid_quantization_step1
	3.5.12.2hybrid_quantization_step2

	3.5.13Quantitative accuracy analysis
	3.5.14List Devices
	3.5.15Export encrypted RKNN model

	3.6Accuracy troubleshooting
	3.6.1Simulator accuracy troubleshooting
	3.6.1.1Troubleshooting the accuracy of the “fp16 model”
	3.6.1.2Troubleshooting the accuracy of the “quantized mod
	3.6.1.2.1Configuration issues
	3.6.1.2.2Quantitative methods issue

	3.6.2Runtime accuracy troubleshooting

