# How to use accuracy-analysis function ## Model Source The model used in this example come from: https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx ## Script Usage *Usage:* ``` python test.py ``` *Description:* - The default target platform in script is 'rk3566', please modify the 'target_platform' parameter of 'rknn.config' according to the actual platform. - If connecting board is required, please add the 'target' parameter in 'rknn.accuracy_analysis'. ## Expected Results This example will outputs the results of the accuracy analysis and store all the results in the snapshot directory, as follows: ``` # simulator_error: calculate the simulator errors. # entire: errors between 'golden' and 'simulator'. # single: single layer errors. (compare to 'entire', the input of each layer is come from 'golden')! # ('nan' means that tensor are 'all zeros', or 'all equal', or 'large values', etc) layer_name simulator_error entire single ----------------------------------------------------------------------------------- [Input] data 1.000000 1.000000 [exDataConvert] data_int8 0.999973 0.999973 [BatchNormalization] resnetv24_batchnorm0_fwd 0.999946 0.999946 ... [Relu] resnetv24_relu1_fwd 0.983521 0.999891 [Conv] resnetv24_pool1_fwd 0.995452 0.999986 [Conv] resnetv24_dense0_fwd_conv 0.994497 0.999933 [Reshape] resnetv24_dense0_fwd_int8 0.994497 0.999945 [exDataConvert] resnetv24_dense0_fwd 0.994497 0.999945 ``` - Note: Different platforms, different versions of tools and drivers may have slightly different results.