# How to use dynamic_input function ## Model Source The model used in this example come from the following open source projects: https://github.com/shicai/MobileNet-Caffe ## Script Usage *Usage:* ``` python test.py ``` *Description:* - The default target platform in script is 'rk3566', please modify the 'target_platform' parameter of 'rknn.config' according to the actual platform. - If connecting board is required, please add the 'target' parameter in 'rknn.init_runtime'. - The 'dynamic_input' parameter of 'rknn.config' is set to: ``` dynamic_input = [ [[1,3,192,192]], # set 0: [input0_192] [[1,3,256,256]], # set 1: [input0_256] [[1,3,160,160]], # set 2: [input0_160] [[1,3,224,224]], # set 3: [input0_224] ] ``` to simulate models with dynamic input shapes. ## Expected Results This example will print the TOP5 labels and corresponding scores of the test image classification results for each different input shape, as follows: ``` -----TOP 5----- Analysing : 100%|███████████████████████████████████████████████| 104/104 [00:00<00:00, 7669.31it/s] Preparing : 100%|███████████████████████████████████████████████| 104/104 [00:00<00:00, 1079.43it/s] mobilenet_v1 -----TOP 5----- [155]: 0.994140625 [154]: 0.0022792816162109375 [204]: 0.001964569091796875 [283]: 0.0009207725524902344 [194 196 284]: 9.40561294555664e-05 Analysing : 100%|███████████████████████████████████████████████| 104/104 [00:00<00:00, 6171.67it/s] Preparing : 100%|███████████████████████████████████████████████| 104/104 [00:00<00:00, 1598.60it/s] mobilenet_v1 -----TOP 5----- [155]: 0.9580078125 [154]: 0.0338134765625 [204]: 0.0074310302734375 [194]: 0.0003018379211425781 [219]: 0.00014257431030273438 Analysing : 100%|███████████████████████████████████████████████| 104/104 [00:00<00:00, 9171.15it/s] Preparing : 100%|███████████████████████████████████████████████| 104/104 [00:00<00:00, 1389.63it/s] mobilenet_v1 -----TOP 5----- [155]: 0.9833984375 [154]: 0.007686614990234375 [204]: 0.0036029815673828125 [283]: 0.0009179115295410156 [193]: 0.0007853507995605469 ``` - Note: Different platforms, different versions of tools and drivers may have slightly different results.