# How to use MMSE function ## Model Source The model used in this example come from the following open source projects: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md ## Script Usage *Usage:* ``` python test.py ``` *Description:* - The default target platform in script is 'rk3566', please modify the 'target_platform' parameter of 'rknn.config' according to the actual platform. - If connecting board is required, please add the 'target' parameter in 'rknn.init_runtime'. - The 'quantized_algorithm' parameter of 'rknn.config' is set to 'mmse'. and a 'MmseQuant2' progress bar can be seen during the conversion process, indicating the execution progress of MMSE. ## Expected Results This example will outputs the results of the accuracy analysis and print the TOP5 labels and corresponding scores of the test image classification results, as follows: ``` layer_name simulator_error entire single ----------------------------------------------------------------------------------------------------------- [Input] input:0 1.000000 1.000000 [exDataConvert] input:0_int8 0.999986 0.999986 [Conv] MobilenetV1/MobilenetV1/Conv2d_0/BatchNorm/FusedBatchNorm:0 [Clip] MobilenetV1/MobilenetV1/Conv2d_0/Relu6:0 0.999986 0.999986 ... [Clip] MobilenetV1/MobilenetV1/Conv2d_13_pointwise/Relu6:0 0.858769 0.999334 [Conv] MobilenetV1/Logits/AvgPool_1a/AvgPool:0 0.948201 0.999804 [Conv] MobilenetV1/Logits/Conv2d_1c_1x1/BiasAdd:0 0.963938 0.999562 [Reshape] MobilenetV1/Logits/SpatialSqueeze:0_int8 0.963938 0.999906 [exDataConvert] MobilenetV1/Logits/SpatialSqueeze:0 0.963938 0.999906 ``` ``` -----TOP 5----- [155]: 0.9931640625 [154]: 0.00266265869140625 [204]: 0.0019779205322265625 [283]: 0.0009202957153320312 [194]: 0.0001285076141357422 ``` - Note: Different platforms, different versions of tools and drivers may have slightly different results.