# Pytorch ResNet18 QAT ## Model Source The model used in this example come from the 'torchvision', more details in the 'export_pytorch_model' function of the script. ## Script Usage *Usage:* ``` python test.py ``` *Description:* - The default target platform in script is 'rk3566', please modify the 'target_platform' parameter of 'rknn.config' according to the actual platform. - If connecting board is required, please add the 'target' parameter in 'rknn.init_runtime'. - This is a QAT model, and the do_quantization of rknn.build needs to be set to False. ## Expected Results This example will print the TOP5 labels and corresponding scores of the test image classification results, as follows: ``` -----TOP 5----- [812]: 0.9997414350509644 [404]: 0.0001939184294315055 [657]: 1.4925829418643843e-05 [466 744 895]: 8.44217083795229e-06 [466 744 895]: 8.44217083795229e-06 ``` - Note: Different platforms, different versions of tools and drivers may have slightly different results.